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ABSTRACT

We consider the problem of modeling of systems and learning of models from a limited

number of measurements. We also contribute to the development of inference algorithms that

require high-dimensional data processing. As an inspiring example, a growing interest in biology

is to determine dependencies among genes. Such problem, known as gene regulatory network

inference, often leads to identifying of large networks through relatively small gene expression

data.

The main purpose of the thesis is to develop models and learning methods for data based

applications. In particular, we first build a dynamical model for gene-gene interactions to learn

the topology of gene regulatory networks from gene expression data. Our proposed model is

applicable to such complex gene regulatory networks that contain loops and non-linear de-

pendencies between genes. We seek to use dynamical gene expression data when a system is

perturbed. Ideally, such dynamical changes result from local genetic or chemical perturbations

of systems in steady state that can be captured in a time-dependent manner. We present a

low-complexity inference method that can be adapted to incorporate other information mea-

sured across a biological system. The performance of our method is examined employing both

simulated and real datasets. This work can potentially inform biological discovery relating to

interactions of genes in disease-relevant networks, synthetic networks, and networks immediate

to drug response.

Along with the main objective of the thesis, we next seek to estimate high-dimensional

covariance matrices based on a few partial observations. Notably, covariance matrices can be

utilized to form networks or improve network inference. We assume that the true covariance

matrix can be modeled as a sum of Kronecker products of two lower dimensional matrices. To

estimate covariance, we propose a convex optimization approach computationally affordable

in high-dimensional setting and applicable to missing data. Regardless of whether the process
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producing missing values is random or not, our novel scheme can be used without employing any

imputation methods. We characterize the symmetry and positive definiteness of the estimated

covariance and further shed light on its square error performance. The effect of missing values

on the estimation error is mathematically presented and numerical results are illustrated to

validate our method.

In addition to the modeling and learning, we improve inference algorithms that involve

high-dimensional data processing. Specifically, we attempt to reduce the complexity of the

linear minimum mean-square error (LMMSE) estimation when observation vectors have high-

dimensionality and contain missing entries. In this context, the standard LMMSE estimator

must be re-computed whenever missing values take place at different positions. Instead, we

propose a method to first construct the LMMSE estimator based on complete data statistics.

We then apply this estimator to the data vector with missing values replaced by zeros. We

finally establish a low-complexity update according to missing data patterns to modify our

estimation and preserve the LMMSE optimality.
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CHAPTER 1. INTRODUCTION

Data analysis of large-scale systems with respect to the modeling, the learning, and the

inference is a fundamental and challenging problem in variety of applications. Examples of

such applications include bioinformatics (gene regulatory networks, genomic sequence analysis),

social networks (twitter, facebook), and weather forecast. As data become more available, we

seek for converting data to rational and intuitive information amendable for human decision

and discovery. To successfully arrive at this actionable information, we require flexible models

that sufficiently describe the physical or chemical behavior of systems as well as learning of

models from measured data.

The thesis mainly develops generic models and low-complexity algorithms suitable for data

based applications. In particular, we investigate two fundamental problems as follows. We

first build a framework to learn the topology of gene regulatory networks from dynamical

gene expression data. In this scenario, gene networks are directed, present complex gene-gene

interactions, and contain loops while the measured data is limited. Next, we seek to estimate

high-dimensional covariance matrices based on Kronecker product models and observations that

are partially captured. The estimated covariance matrix can be used to construct a graphical

model or improve network inference. In addition to the modeling and learning problems,

we contribute to the improvement of inference algorithms that involve high-dimensional data

processing. Specifically, we derive an algorithm to reduce the complexity of LMMSE estimation

for high-dimensional data with missing values. In the next sections, we briefly demonstrate

the significance of the mentioned subjects as well as data structures, problem settings, and

proposed methods.
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1.1 Gene Regulatory Network Inference

Numerous biological processes take place in the cells. These processes are regulated based

on information within the living systems genome. To obtain a better understanding and demon-

stration of the regulatory processes, it is necessary to shed light on interactions among many

elements of biological systems using available experimental data on the DNA and RNA level as

well as the protein and metabolite level. In this scenario, a gene regulatory network presents

dependencies between biological components and often genes are modeled as nodes and their

corresponding interactions as edges [2, 3].

Inferring gene regulatory networks from gene expression data has proved to be useful in

biological network discovery [4, 5]. For example, it can be used to find the gene regulatory

networks immediate to drug response, to predict interactions among genes in disease-relevant

networks, and to probe of properties of synthetic networks. Moreover, the inference data can

be employed to determine and prioritize candidate genetic elements for downstream biological

and in vivo validation.

The development of computational methods to infer gene regulatory networks from gene

expression datasets is an important challenge. Several different approaches for gene network re-

construction have been proposed such as Bayesian models [6], Boolean models [7], and graphical

Gaussian models [8]. However, these techniques are often bound to fail in large-scale settings,

are related to particular biological and experimental structures, and require biological informa-

tion that is typically unavailable and difficult to determine [9].

The recent advances in higher-throughput sequencing technologies, combined with more

precise modes of genetic perturbation, offers an opportunity to obtain efficient approaches for

gene network inference [10–13]. Previous studies for network recovery via perturbation tend to

be restricted to the analysis of steady-state gene expression [14, 15]. Here, we seek to develop

algorithms for network inference that depends on dynamical gene expression data coupled to

genetic or chemical perturbation.
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In chapter 2, we first present a system of nonlinear ordinary differential equations to model

eukaryotic gene regulation, which offers a new extension of an existing thermodynamic and

statistical mechanic approach to modeling polymerase binding [16,17].

We then propose a step-wise technique to identify gene-gene interactions that expand from

a known point of genetic or chemical perturbation of systems in steady state. Our approach

seeks to use information contained in the dynamic gene expression changes that occur when

systems are perturbed. The novel approach sequentially detects genes that fall out of steady

state and incorporates them into an increasing series of low-complexity optimization problems.

In this process, we consider an important feature of gene regulatory networks that assumes

genes are sparsely connected. We emphasize that the new approach can be adapted to employ

other information measured across biological systems. We finally elucidate the identifiability

of gene regulatory networks and show promising results of our algorithms using simulated and

real datasets.

1.2 High-Dimensional Covariance Matrix Estimation with Missing Data

The problem of high-dimensional covariance matrix estimation is fundamental and has

received high attention in numerous applications such as portfolio risk assessment [18], genomics

[19], user-ratings data [20], and weather forecast [21]. Such high-dimensional approximation

is intrinsically challenging especially when the model dimension is comparable or significantly

larger than the sample size. To deal with the curse of high dimensionality, recent studies

have been focused on low rank and sparse covariance estimation [22–24]. However, covariance

matrices are not necessarily low rank or sparse and could exhibit different structures. For

example, a class of covariance matrices follows Kronecker product structure, that is when the

covariance can be represented as a sum of Kronecker products of two lower dimensional matrices.

This model occurs in many applications, for instance, geostatistics [25], bioinformatics [26], and

wind speed prediction [21].
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In practical applications, measurements may not be fully captured, which leads to obser-

vation vectors with missing entries. It is well known that ignoring missing data in statistical

analysis could lead to an unacceptable bias in parameter estimates [27]. Thus, the design of

appropriate methods for dealing with missing data is essential for the estimation of variables.

There are several approaches to handle missing values, such as maximum likelihood and

multiple imputation [28], but each of them results in different performance. One simple ap-

proach is to exclude variables for which observations are missing and then limit the analysis

to the fully observed measurements. In gene expression data where the majority of genes are

affected by missing data, we are left with few variables and consequently, removing variables is

waste of available measurements.

An alternative approach is to impute missing values and then proceed to a desired analysis

of the available and imputed data. The most common methods for estimating missing data is

the maximum likelihood, expectation-maximization (EM) algorithm, and multiple imputation

which require restrictive assumptions on missing data distributions and they are computation-

ally expensive in high-dimensional setting [29].

In chapter 3, we consider covariance matrices with the Kronecker product structure and

seek for their estimations through partial observations. In particular, we generalize the per-

muted rank-penalized least square method [21] to the case of missing data. We assume that

the position of missing values are available, but missing data mechanisms are unknown. We

emphasize that our method can be applied to any missing data patterns, whether the process

producing missing values is random or not, and does not depend on imputation techniques.

We also assume that observation vectors are independent and identically distributed (i.i.d)

multivariate Gaussian provided that no missing value occurs.

We introduce a novel unbiased estimator that utilizes the standard sample covariance ma-

trix, even though the sample covariance can not be computed due to the presence of missing

data. We employ this new unbiased estimator to propose a convex optimization approach for

estimating covariance matrices with Kronecker product structure. For this scenario, we charac-

terize the symmetry and positive definiteness of the estimated covariance. We further establish

a tight upper bound on the square error (SE) of our procedure and mathematically reveal the
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consequences of missing data on the SE performance. Numerical simulations are presented to

validate our approach.

1.3 High-Dimensional LMMSE Estimation with Missing Data

In statistics, the LMMSE estimation refers to a method that linearly approximates a de-

sired signal from an observation through minimizing the mean-square error. This approach

is widely applied to many fields, such as control theory [30, 31], signal processing [32], and

communications [33].

The LMMSE estimator designed for vector observations involves the inverse of the data co-

variance matrix. Such matrix inversion may be computationally expensive in high-dimensional

setting. The multistage Wiener filter proposed by [34] is an alternative procedure to implement

the LMMSE filter and avoid the direct inversion of the data covariance matrix. In this scenario,

decompositions based on orthogonal projections are employed to prevent covariance inversion.

In practical applications, observation vectors may contain missing entries as discussed in

the previous section. Given all data statistics and the position of missing values, the LMMSE

estimator can still be obtained and applied to observations that are fully captured. Nevertheless,

the required computations could be intensive in high-dimensional setup since the LMMSE

estimator must be re-derived for different missing data patterns.

In chapter 4, we consider high-dimensional data with missing values and seek to build an

algorithm to reduce the complexity of LMMSE estimation. We first design the LMMSE filter

based on the data statistics. Then, we apply this full-data processing to observation vectors

with missing values where all missing entries are replaced by zeros. We finally derive a low-

complexity update, that depends on missing data patterns, to modify our estimate. Notably,

our procedure maintains the LMMSE optimality and also achieves lower complexity compared

to constructing a new LMMSE filter whenever the position of missing data changes. Moreover,

the proposed update is applicable to the multistage Wiener filter and dose not hurt its LMMSE

optimality.
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CHAPTER 2. GENE REGULATORY NETWORK INFERENCE FROM

PERTURBED TIME-SERIES EXPRESSION DATA

Modified from a paper submitted to IEEE/ACM Transactions on Computational Biology and

Bioinformatics

Mahdi Zamanighomi1, Mostafa Zamanian2, Michael J. Kimber3, and Zhengdao Wang1

We focus on the modeling and learning of gene-gene interactions based on dynamical

datasets, known as gene regulatory network inference. The reconstruction of gene regula-

tory networks from gene expression data is a challenging problem due to the complexity of

interactions among genes as well as limited sources of measured data. A variety of models and

methods have been developed to address different aspects of this important problem. However,

these techniques are often difficult to scale, are narrowly focused on particular biological and

experimental platforms, require experimental data that are typically unavailable and difficult to

ascertain. The more recent availability of higher-throughput sequencing platforms, combined

with more precise modes of genetic perturbation, presents an opportunity to formulate more

robust and comprehensive approaches to gene network inference. Here, we propose a step-wise

framework for identifying gene-gene regulatory interactions that expand from a known point of

genetic or chemical perturbation using time series gene expression data. This novel approach

sequentially identifies non-steady state genes post-perturbation and incorporates them into a

growing series of low-complexity optimization problems. The governing ordinary differential

equations of this model are rooted in the biophysics of stochastic molecular events that under-

lie gene regulation, delineating roles for both protein and RNA-mediated gene regulation. We

1Department of Electrical and Computer Engineering, Iowa State University, Ames, IA USA
2Department of Molecular Biosciences, Northwestern University, Evanston, IL USA
3Department of Biomedical Sciences, Iowa State University, Ames, IA USA
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show the successful application of our core algorithms for network inference using simulated

and real datasets.

2.1 Introduction

The elucidation of gene regulatory networks is fundamental to understanding the dynamic

functions of genes in biochemical, cellular and physiological contexts. The architectures of net-

works comprised of small numbers of genes are generally deciphered using classical experimental

techniques, where biophysical data describing the interactions of genes and their products can

lead to useful models and well-characterized systems. While this validated experimental tract

continues to provide valuable biological insight, it is ultimately laborious and costly, and often

demands strategies uniquely tailored to individual biological systems and problems. Further-

more, the models that result from these efforts tend to be limited to a very modest subset of

genes, typically suffer from a lack of temporal resolution, and focus narrowly on very particular

modes of interaction.

To complement these established approaches, there is a great impetus to develop more

efficient and uniformly applicable in silico methods for gene network inference and discovery

[2, 12, 35–39]. Of particular interest is the goal of gene network inference using perturbed

gene expression data [10, 13, 40–46], whereby gene expression levels are measured under the

influence of either genetic or chemical perturbations of the system. Previous attempts at

network reconstruction via perturbation tend to be limited to the analysis of steady-state

gene expression. The growing ubiquity of next-generation sequencing technologies presents a

powerful high-throughput substrate for capturing the dynamic and non steady-state aspects of

gene expression.

In this work, we seek to develop a robust framework for network inference that relies on

temporal gene expression data coupled to genetic or chemical perturbation. In a departure

from previous attempts, our formulation does not require a priori knowledge beyond the set of

temporal gene expression measurements, acknowledges the non-steady state and dynamic na-

ture of gene expression, incorporates both RNA and protein-mediated regulation, sequentially

absorbs a growing number of genes into the regulatory network immediate to perturbation,
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aims for sparsity in network topology, and reduces an otherwise complex optimization problem

into a convex form that can be solved efficiently.

Notation: Throughout this chapter {d, i, j, k, l} count integer numbers. Column vectors

and matrices are indicated by bold lower-case and upper-case letters, respectively. We use 1

to show a vector with all entries 1 and 0 a vector with all entries 0. The set of real numbers

is denoted as R and positive real numbers R+. The indicator function IR+{x} has the value

one when x ∈ R+, otherwise zero. The operator sign(x) replaces each entry of x with its sign

function value. We use (X)T to denote transpose of X, dx(t)/dt and x′(t) the first derivative

of x(t) with respect to time t, ∥x∥1 the 1-norm of vector x, ∥x∥2 the 2-norm of vector x, and

∥X∥ the largest singular value of matrix X. We explicitly state a function of time in the form

x(t). This is to be distinguished from vectors of the form x(i), where i is a positive integer

representing the ith entry of the vector x.

2.2 System Model

2.2.1 Gene Expression Datasets and Perturbation

Let xi(t) and yi(t) denote the RNA-level and protein-level expression of gene i at time t,

respectively. We define an m× n gene expression matrix

X =


x1(t1) . . . x1(tn)

...
. . .

...

xm(t1) . . . xm(tn)

 ,

where m indicates the total number of genes in the system and n the total number of samples

in the time series. In practical cases, with expression data originating from microarray or

RNA-Seq experiments, m ≫ n.

Here, we are concerned with datasets with known points of perturbation. In this experimen-

tal scheme, a gene xpi is specifically targeted for perturbation via either gene suppression or gene

over-expression. Perturbation is triggered at a known time point after a series of presumably

steady state measurements. Without loss of generality, it is assumed that the starting point

of perturbation occurs at t1 and prior measurements are approximately steady state. Datasets
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from experiments that conform to this scheme are in the following form, where xpi (t1) represents

the point of perturbation and L denotes the total number of samples post-perturbation.

Xp ..=



. . . x1(t0) x1(t1) . . . x1(tL)

. . .
...

...
. . .

...

. . . xi(t0) xpi (t1) . . . xpi (tL)

. . .
...

...
. . .

...

. . . xm(t0) xm(t1) . . . xm(tL)


2.2.2 Conceptual Description of Inference Approach

We consider a non-perturbed system as one with genes in steady state, i.e., where dxi(t)/dt

and dyi(t)/dt are approximately zero. After a series of steady state expression measurements,

a protein-encoding gene in this system is perturbed to bring about a dramatic change in its

expression level, i.e., where |dxpi (t)/dt| ≫ 0, followed by a series of post-perturbation measure-

ments. The discrete set of expression measurements, with appropriate temporal resolution, can

be used to produce continuous gene trajectory curves.

For a short period of time post-perturbation, the perturbed gene falls out of steady state

while all other genes remain effectively in steady state. The induced change in RNA expression,

∆xpi , is coupled to a delayed change in protein expression, ∆ypi . This shift in protein availability

leads, through the immediate regulatory network of the perturbed protein, to changes in the

expression levels of other genes.

Consider the set of all genes that are affected by ∆ypi at time t. We divide this set into

protein and miRNA-encoding subsets. The set of all indices that correspond to protein-encoding

genes is shown as G(t), and M(t) is set of all indices that correspond to miRNA-encoding

genes. We define the collection of RNA expression data for these subsets as XG(t)
..= {xi(t)|i ∈

G(t)} and XM(t)
..= {xi(t)|i ∈ M(t)}, respectively. We further define the collection of protein

expression levels for subset G as YG(t)
..= {yi(t)|i ∈ G(t)}.

In principle, we can identify genes that fall out of steady state in an ordered manner

with gene trajectory analysis. The growing set of non-steady state actors in the system, both
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members of G(t) and M(t), can then be sequentially incorporated into a growing network of

interactions to be modeled.

2.2.3 Governing Regulatory Equations

Gene and protein expression dynamics are often modeled in the form of ordinary differential

equations [47–49], with gene-specific rate constants for molecular synthesis and degradation

and gene-specific functions accounting for the regulatory effects of proteins. We introduce

miRNA-mediated gene regulation into this model and establish functions for both protein and

RNA regulatory interactions that complement our overall approach to network inference. The

architecture of the gene regulatory circuit under consideration is depicted in Figure 2.1.

This circuit can be represented in the following form:

dxi(t)

dt
= τifi(YG(t))−

(
λRNA
i + gi(XM(t))

)
xi(t) (2.1)

dyi(t)

dt
=
(
ri − hi(XM(t))

)
xi(t)− λProt

i yi(t), (2.2)

where τi is the rate of transcription when RNA polymerase (RNAP) is bound, fi(YG(t)) is the

probability of RNAP binding, λRNA
i is the rate of basal RNA degradation, gi(XM(t)) incorpo-

rates the effect of miRNA-mediated RNA degradation, ri is the rate of translation, hi(XM(t))

accounts for the effect of miRNA-mediated translational inhibition, and λProt
i is the rate of

protein degradation. It follows from the biological definitions of the system that parameters τi,

λRNA
i , ri, and λProt

i are to be positive and hi(XM(t)) ≤ ri.

2.2.4 Protein-Mediated Regulation

For each gene, i, we employ an existing statistical thermodynamic framework [16, 17] to

model the equilibrium probability of RNAP binding to a gene of interest as a function of

protein regulators, fi(YG(t)). We extend a previous derivation of multiple protein regulators

operating on a single gene [15] and explicitly show that the general form can be expressed as

a function of non-steady state genes, G(t) (see Appendix A). Although steady state regulators

play an active role in gene regulation, we can effectively restrict our binding probability function
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Figure 2.1: Gene regulatory circuit. ‘Gene’ represents protein-encoding genes and ‘miRNA’

represents miRNA-encoding genes. Protein-encoding genes can give rise to transcription factors

(‘TF’) that directly exert influence on the cis regions of other genes, as well as non-TF proteins

(‘G’) that can indirectly act through TFs and various biochemical cascades. These protein

regulators ultimately affect the equilibrium probability of RNA polymerase (‘P’) being bound

to a promoter of interest. Additionally, miRNAs can directly repress expression via targetted

RNA degradation or translational repression. All proteins and RNAs in this system undergo

varying rates of chemical degradation.

to the activities of perturbed regulators. This function is shown below:

fi(YG(t)) =

ai0 +
N(t)∑
j=1

aij
∏

k∈Sij(t)

yk(t)

1 +
N(t)∑
j=1

bij
∏

k∈Sij(t)

yk(t)

(2.3)

where Sij(t), 0 ≤ j ≤ N(t), is the list of all possible protein products of genes within set

G(t) that interact to form regulatory complexes. For instance when G(t) = {1, 2}, there are

N(t) + 1 = 4 complexes as the empty set Si0 = {∅}, Si1 = {1}, Si2 = {2}, and Si3 = {1, 2}.

To reduce the complexity of this model, we restrict Sij(t) to all terms up to the second-
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order, accounting for the interactions of no more than two proteins bound together. In this

arrangement, a complex represents either the products of a single gene or the interaction of

the products of any two genes that can form a regulatory agent. However, any number of

complexes can additively combine to regulate single genes. The numbering of complexes is

an arbitrary labeling of genes and gene-pairs in the system. The coefficients 0 ≤ aij ≤ bij

depend on the binding energies of regulator complexes that act on a promoter region, and

ai0 and bi0 correspond to the case where no regulators are bound to the promoter region

(
∏

k∈Si0(t)
yk(t) ..= 1). It is assumed all coefficients are normalized so that bi0 = 1.

2.2.5 miRNA-Mediated Regulation

To account for the effects of miRNA regulation on each gene, we draw on previous mass-law

(linear) models [50,51] that acknowledge two primary routes of inhibitory regulation: (i) cleav-

age or degradation of target transcript and (ii) translational repression. These are represented

by functions gi(XM(t)) and hi(XM(t)), respectively. The former is a modifier of the RNA degra-

dation rate constant, λRNA
i , while the latter detracts from RNA available to the translational

machinery without affecting RNA concentration as assayed. These functions are shown below.

gi(XM(t)) =
∑

j∈XM(t)

λRNA
ij xj(t) (2.4)

hi(XM(t)) =
∑

j∈XM(t)

λProt
ij xj(t) (2.5)

where both λRNA
ij and λProt

ij are greater than or equal to zero.

We impose the constraint that any given miRNA can only inhibit the expression of a partic-

ular target mRNA through one mode of regulation, either transcript cleavage or translational

repression. This is reasonable, given that the particular pathway of inhibition is determined by

the specificity of binding between a particular miRNA and a seed site on a target transcript,

which is a fixed interaction for each miRNA-mRNA pairing [52–54]. This constraint takes the

following mathematical form

IR+{λRNA
ij }+ IR+{λProt

ij } = 1.
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2.3 Network Inference Algorithm

Subsections 2.3.1 - 2.3.4 contain all the core algorithmic components in our proposed in-

ference pipeline. A graphical overview of how these modular algorithms form a framework

for gene network inference is shown in Figure 2.2. This linear ordering of post-processing and

inference steps, although designed for a normalized gene expression dataset involving a precise

perturbation, is robust and flexible.

2.3.1 Modeling and Estimation of Gene Expression

Normalized gene expression values, such that xi(t) ≤ 1, are the given input for the algo-

rithms described in this and subsequent sections. In reality, gene expression trajectories are

inevitably noisy, which perturb the model parameters away from the true values. To reduce

this noise effect, we first represent gene expressions as a linear combination of basis functions

in the following form

xi(t) =

D∑
d=1

θidφd(t) = φ(t)Tθi, (2.6)

where D is the total number of bases and θid the coefficient of the dth basis function, φid(t).

The basis functions are chosen to take the form of a B-spline (See Appendix A). Although all

genes are associated with a common set of basis functions in (2.6), one can consider different

sets of basis functions for different genes.

The form of (2.6) allows us to fit a continuous function for a set of discrete gene expression

measurements, using the following minimization

(P1) min
θi

∥∥∥∥∥∥
L∑

j=1

(
xi(tj)−φ(tj)

Tθi

)∥∥∥∥∥∥
2

+ γθθ
T
i Kθi,

where the roughness penalty θT
i Kθi =

∫ tL
t1

(
d2xi(t)/dt

2
)2

dt and K is a roughness matrix with

the (j, k)th entry
∫ tL
t1

φ′′
j (t)φ

′′
k(t)dt. Here, the first term is intended to diminish noise within

measurements and the second term is intended to smooth our approximations. The parameter

γθ is tuned by cross validation where training data is available, otherwise it can be drawn from

a characterized network from the nearest available biological system.
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Figure 2.2: Overview of gene inference pipeline, beginning with a normalized gene expres-

sion dataset. The first stage involves the estimation of all gene trajectories as noise-free and

continuous curves (P1), followed by segmentation into equally-spaced intervals for detection

of significant changes in expression. The time-dependent expansion of G(t) and M(t), along

with the result of (P1), seed downstream network inference. In the next stage, (P2) is used

to estimate protein expression, and finally all obtained results are considered in algorithm 1 to

produce a regulatory network map. Figure 2.3 provides a graphical description of the bracketed

pre-inference stages.

Employing (P1), our estimation to xi(t), denoted as x̂i(t), is a continuous function in time

and its first derivative can be easily calculated as

dx̂i(t)

dt
≃ x̂i(t+∆t)− x̂i(t)

∆t
. (2.7)
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Figure 2.3: The bracketed pre-inferenced stages of the pipeline in Figure 2.2 are shown graph-

ically. Discrete expression data from two genes and a small number of basis functions are

utilized to produce continuous models of expression (P1), followed by segmentation and change

detection. In this simple example, a change in gene 2 is detected in sub-interval r = 1, and a

change in gene 1 is detected in sub-interval r = 5.

Throughout the rest of the chapter, it is assumed that our samples are taken from x̂i(t)

and therefore, any arbitrary number of samples, L, is achievable. We further replace x̂i(t) with

xi(t) for notational convenience.

2.3.2 Detection of Perturbed Genes

We can introduce a simple first approach for detecting when individual genes exit steady

state post-perturbation. Gene expression models generated via (P1) are essentially smooth

and noise-free when the total number of bases is restricted to an appropriately small number,

D. High-frequency gene trajectories, whether a product of noise or periodicity in expression
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[55,56], are converted into flat trajectories. This property allows us to detect when significant

non-periodic deviations occur with respect to the initial steady state measurement(s). More

precisely, time interval [t1, tL) is divided into R sub-intervals as [rt{1,L}, (r + 1)t{1,L}) for all

1 ≤ r ≤ R, where t{1,L}
..= (t1 − tL)/(R + 1). We choose R with respect to the nature of the

original expression data, such that R ≥ D.

For each sub-interval, we look for the maximum and minimum values of trajectories. The

sets G(t) and M(t) are then expanded as follows. At sub-interval r, gene i is included within

either G(t) or M(t) for t > rt{1,L} provided that the deviation from the steady state mea-

surement of gene i is greater than a desired threshold, T . In the simulations described in this

chapter, T was set in the range of [0.15, 0.20] for normalized expression data. Both R and this

threshold can be modified to better reflect the frequency of gene expression measurements for

a given biological system. If more complex change detection schemes are preferred, a number

of alternative approaches can be adapted for this purpose [57–59].

2.3.3 Modeling and Estimation of Protein Expression

Formulation: Similar to (2.6), we express the protein level yi(t) as

yi(t) =

D∑
d=1

αidφd(t) = φ(t)Tαi. (2.8)

Our objective is first to find αi through the ordinary differential equation (ODE) (2.2) resulting

in an estimation of the protein level yi(t). The calculated yi(t)’s are in turn used to approximate

unknown variables associated with the ODE (2.1). One of the challenges of solving non-linear

ODEs is that the solution does not usually have a closed form. We propose to transform the

non-linear ODE (2.2) into a linear regression problem. To motivate our method of constructing

the ODE solution, we consider the first derivative of yi(t) as

y′i(t) = φ′(t)
T
αi,

and ODE (2.2) is consequently represented as

φ′(t)
T
αi =

ri −
∑

j∈M(t)

λProt
ij xj(t)

xi(t)− λProt
i φ(t)Tαi.
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We rewrite the above equation in the following form

rixi(t)− xM(t)
TλR

i (t)− bi(t)
Tαi = 0, (2.9)

where bT
i (t)

..= [λProt
i φ(t)T + φ′(t)T ] and λR

i (t) is the column vector with entries λProt
ij , ∀j ∈

M(t). The miRNA expressions corresponding to λR
i (t) are indicated by the vector xM(t) such

that both vectors, λR
i (t) and xM(t), have the same index order. For notational convenience, we

assume that all entries of xM(t) are multiplied by xi(t).

Consider gene expressions at times tl, 1 ≤ l ≤ L. Setting all available gene expressions in

equation (2.9), we arrive at

Ai

(
−ri, z

T
i ,α

T
i

)T
= 0,

where

Ai
..=



xi(t1) (xM(t1)
T ,0(t1)

T ) bi(t1)
T

xi(t2) (xM(t2)
T ,0(t2)

T ) bi(t2)
T

...
...

...

xi(tL) xM(tL)
T bi(tL)

T


, zi ..= λR

i (tL),

and 0(tl) is the zero column vector with length card(M(tL))− card(M(tl)). When the length

is zero, we do not consider the vector 0(tl), e.g., (xM(tL)
T ,0(tL)

T ) is replaced by xM(tL)
T in

the last row of Ai. Matrix Ai has L rows and card(M(tL)) + D + 1 columns. Given that

ri is positive, we normalize
(
−ri, z

T
i ,α

T
i

)T
with respect to ri and represent the normalized

vector as
(
−1, zTi ,α

T
i

)T
, acknowledging abuse of notation. Given λProt

i and M(t), matrix Ai

is completely determined.

Algorithm: We need to solve the linear system model

Ai


−1

zi

αi

 = 0 (2.10)

for zi and αi when matrix Ai is determined. For identifiability of zi and αi, we require that

L ≥ card(M(tL)) + D, that is the number of equations is no smaller than the number of
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unknown parameters. However the sparsity in zi, given that only a small number of miRNAs

typically act on a common gene [60], reduces the number of required equations.

To account for measurement noise and encourage zi to be sparse, we will minimize the

2-norm error described in (2.10) with 1-norm regularization ∥zi∥1. Furthermore, we adopt the

analogous roughness penalty αT
i Kαi as used in (P1). Thus, we propose to obtain the ODE

(2.2) solution with the following convex optimization

(P2) min
{zi,αi}

∥∥∥∥∥∥∥∥∥∥
Ai


−1

zi

αi


∥∥∥∥∥∥∥∥∥∥
2

+ γz∥zi∥1 + γαα
T
i Kαi,

subject to zi ≥ 0

(xM(tl)
T ,0(tl)

T )zi ≤ xi(t) ∀1 ≤ l ≤ L

where γz and γα are chosen using cross validation. The second constraint ensures that the

total rate of translation, ri − hi(XM(t)), is not negative. Due to the convex nature of this

problem, it can be quickly solved for large gene datasets. This recovery of protein expression is

dependent on prior knowledge of individual protein degradation rates, λProt
i . In the absence of

this experimental data, we can fix the value of λProt
i to 1 for the entire system and still achieve

accurate network reconstruction as shown in subsequent sections.

2.3.4 Gene Regulatory Inference

Formulation: The model given by ODEs (2.1) and (2.2) describes the evolution of RNA

and protein expressions provided that we know all the regulatory parameters, e.g., aij , bij ,

and τi. Coefficients aij and bij are difficult to experimentally determine and it is currently

infeasible to carry out the relevant measurements simultaneously for a complex system with a

large number of genes and gene products under consideration. Our goal is to estimate these

coefficients so that the ODE models can be temporally fitted to large gene expression data.

Specifically, we will use the previously described estimations of protein and RNA expression to

approximate aij and bij , and to infer a regulatory network map.
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To improve the reliability of the inferred network, we take into account time-dependent

changes in gene levels and construct a set of equations accordingly. This is an important

departure from standard steady state treatments. In this scenario, we first assume that the

non-perturbed system is in an initial steady state, where RNA and protein levels are near

constant (i.e., dxi(t)/dt = dyi(t)/dt ≃ 0). As previously mentioned, the perturbation of protein-

encoding gene xpi (t1) first leads to fluctuations in the expression levels of genes in its immediate

regulatory network. Genes that have exited a steady-state expression profile at any time up to

t, G(t) and M(t), expand to contain greater numbers of genes that interact to form a putative

regulatory network.

Considering changes in gene levels xi(t) at time tl, 1 ≤ l ≤ L, with the exception of xpi (t1),

the term τifi(YG(tl)) in equation (2.1) can be rewritten as follows

τifi(YG(tl)) =

τiai0 +
N(tl)∑
j=1

τiaij
∏

k∈Sij(tl)

yk(tl)

1 +
N(tl)∑
j=1

bij
∏

k∈Sij(tl)

yk(tl)

..=
pT
i (tl)ai

pT
i (tl)bi

, (2.11)

where ai is a vector with (j + 1)th entry τiaij , 0 ≤ j ≤ N(tL). The (j + 1)th element of vector

pi(tl) is described by
∏

k∈Sij(tl)
yk(tl) when 0 ≤ j ≤ N(tl) and zero for N(tl) + 1 ≤ j ≤ N(tL).

Vector bi is defined such that the first entry is 1 and (j + 1)th, 1 ≤ j ≤ N(tL), is bij .

Remark 2.1. Given that yi(t)s are normalized with respect to ri, aij and bij include the

multiplier term
∏

k∈Sij(tl)
rk so that the normalization can be vanished. Similarly, τi can be

absorbed into the coefficients aij, where we assume τi < 1 to maintain the algorithm constraint

0 ≤ ai ≤ bi.

We also representλRNA
i +

∑
j∈M(tl)

λRNA
ij xj(tl)

xi(tl) +
dxi(t)

dt

∣∣∣∣
t=tl

..= uT
i (tl)λi, (2.12)

in which ui(tl) and λi are defined as follows. First and second entries of vector ui(tl) are

dxi(t)/dt|t=tl and xi(tl), respectively. The remaining entries are xj(tl)xi(tl), j ∈ M(tl). Making

the same arrangement of array as ui(tl), vector λi is determined by first entry 1, second entry

λRNA
i , and subsequent entries λRNA

ij , j ∈ M(tl).
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Using (2.11)–(2.12), equation (2.1) can be reformulated as

Ωl(ai,bi,λi) ..= pT
i (tl)ai − uT

i (tl)λib
T
i pi(tl) = 0. (2.13)

Algorithm: We need to solve the non-convex problem

(P3) min
{ai,bi,λi}

Γ(ai,bi,λi)

subject to 0 ≤ ai ≤ bi, 0 ≤ λi

bi(1) = 1

λi(1) = 1,λi(2) = λRNA
i

with

Γ(ai,bi,λi) ..=

L∑
l=1

Ωl(ai,bi,λi)
2 +

γ1
2

(
∥λi∥22 + ∥bi∥22

)
+ γ2∥bi∥1 + γ3∥λi∥1.

The first term in the above equation follows from (2.13). The second term associated with

γ1/2 motivates grouping effect among variables bi and λi [61,62]. Due to the assumption that

each gene has only a few regulators, 1-norm regularizations are considered to encourage sparse

solutions. Note that in the absence of miRNAs (all λRNA
ij = 0), terms ∥λi∥2 and ∥λi∥1 are no

longer needed.

Non-convex optimizations are generally hard to solve in a reasonable time. Hence, we seek

to identify a special treatment that reduces the computational complexity and provides desired

solutions. Optimization (P3) is convex in {ai,bi} for fixed λi and vice versa, and therefore the

problem is bi-convex and can be solved using a variation of the alternating-direction method

of multipliers (ADMM) which cycles over two groups of variables [63] (see Appendix A). Here,

given the absence of dual variables, ADMM is reduced to simple alternating minimization. The

proposed solver entails an iterative procedure compromising two steps per iteration k = 1, 2, . . .

This iterative procedure implements a block coordinate descent method [64]. At each min-

imization, the variables that are not being updated are treated as fixed and are replaced with

their most updated values. Then the iteration alternates between two sets of variables, {bi,ai}

and λi.
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Algorithm 1 : Gene regulatory network inference

input ai,bi,λi

initialize ai[0],bi[0], and λi[0] at random with respect to

bi(1) = 1,λi(1) = 1, and λi(2) = λRNA
i

for k = 0, 1,. . . do

[S1] Update primal variables ai and bi:

{ai[k + 1],bi[k + 1]} = arg min
{bi,ai}

Γ(ai,bi,λi[k])

subject to 0 ≤ ai ≤ bi

bi(1) = 1

[S2] Update primal variable λi:

λi[k + 1] = argmin
λi

Γ(ai[k],bi[k],λi)

subject to λi ≥ 0

λi(1) = 1,λi(2) = λRNA
i

end for

return ai,bi,λi

One difficulty with the proposed solver is that it may result in stationary points which

are not necessarily globally optimal. This occurs since optimization (P3) is not convex in

{bi,ai,λi}. Motivated by the proposition 1 in [65], the next theorem offers a global optimality

certificate upon the convergence of the solver.
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Theorem 2.1. Let {āi, b̄i, λ̄i} be a stationary point of (P3). If∥∥∥∥∥
L∑
l=1

Ωl(āi, b̄i, λ̄i)ui(tl)p
T
i (tl)

∥∥∥∥∥ ≤ γ1
2
, (2.14)

then {āi, b̄i, λ̄i} is the globally optimal solution of (P3).

Proof. See Appendix A.

Remark 2.2. For non-convex problems, ADMM offers no convergence guarantees. Neverthe-

less, there are evidences in the literature that show empirical convergence of ADMM, particularly

when the non-convex exhibits specific structures. For example in our scenario, problem (P3)

is bi-convex and admits unique closed form solutions for sub-problems [S1] and [S2]. This

observation along with desired properties, Theorem 4.5 and 4.9 in [66], are indeed a sufficient

case for successful convergence. A formal proof of convergence is beyond the scope of this work.

Algorithm 1 is intended for the case in which the RNA degradation rates, λRNA
i , are avail-

able. However, experimentally measuring λRNA
i is a difficult task. We offer a simple modifica-

tion to the algorithm so that network inference can be still obtained without prior knowledge

of RNA degradation rates.

For simplicity of explanation, we can first remove miRNAs from our model. ODE (2.1) can

then be rewritten as

Ωl(ai,bi, ci) ..= pT
i (tl)

(
ai − bi

dxi(tl)

dt
− cixi(tl)

)
= 0, (2.15)

and ci ..= λRNA
i bi. Employing the above reformulation, unknown variables ai, bi, and ci are

estimated through the following convex optimization

(P4) arg min
{ai,bi,ci}

L∑
l=1

Ωl(ai,bi, ci) + γ2(∥bi∥1 + ∥ci∥1)

subject to 0 ≤ ai

ai ≤ bi

λminbi ≤ ci ≤ λmaxbi, (2.16)

where λmin and λmax specify an lower and upper bound for λRNA
i , respectively. Variable ci

is introduced to remove λRNA
i from our optimization. However, the new variable expands
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1 32
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Figure 2.4: Map of two gene regulatory networks with similar gene levels

the feasible set of solutions, which might create an answer different from the true value. To

reduce this effect, we add constraint (2.16) to (P4) to tighten the feasible set of solutions.

Given that λRNA
i /τi ≥ 1, we can take on the additional constraint ai ≤ ci. In the subsequent

simulations, λmin is in the near-zero range [0.001, 0.01], and λmax is selected in the range

[0.1, 1]. It is straightforward to generalize the introduced approach within the framework of

(P3). Derivations are removed to avoid repetition in the chapter.

2.4 Identifiability of Gene Regulatory Networks

New RNA sequencing workflows in conjunction with gene expression data are dramatically

emerging. However, they must be evaluated to determine which of datasets are of value for the

gene network inference. In fact, we need to understand what system knowledge can be obtained

from gene expression data alone? What are limitations in gene expression data and current

biological information for inferring gene networks. To clarify the difficulty here, consider Figure

2.4. In this example, two gene regulatory networks (top and bottom) with a total number of

three genes are depicted. We assume that gene 1 is perturbed and gene 2 (also 3) approximately

corresponds to similar expression levels in both networks. Then, theses two networks may not

be distinguishable, regardless of any type of inference procedure.

To shed light on the above questions, a formal identifiability method is introduced to inves-
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tigate which of unknown parameters in gene regulatory networks can be estimated using gene

expression data. In particular, we utilize results from differential algebra techniques to perform

the structural identifiabilty analysis of our system model.

2.4.1 Structural Identifiabilty Definition

The structural identifiability analysis of nonlinear dynamical models has been well studied

[67–71]. The focus in this area is to employ differential algebra methods coupled with Gröbner

Bases, Lie derivatives and the Taylor series in order to find globally identifiable parameters of

nonlinear dynamical models. Such models are usually assumed to be in the form of

s′(t,p) = f(s(t,p),u(t),p),

w(t,p) = g(s(t,p),p),

s(0,p) = s0(p), (2.17)

where s(t,p) ∈ Rn, u(t) ∈ Rs, and w(t,p) ∈ Rm are the state variables, the input functions

and the observation functions, respectively. The entries of vectors f and g are polynomials

or fractions of polynomial in s, u, and the parameter vector p. Here, our goal is to deduce

whether p is structurally identifiable or not. Structural identifiability is defined as follows [69]:

Definition 2.1. Let p ∈ Ω ⊆ Rd and s0(p) be the initial condition in (2.17). Consider the map

Mp,s0(·) : u(·) 7→ w(·,p). The parameter vectors p and p∗ are said to be equivalent, denoted

by p ∼ p∗, if and only if Mp,s0(·)(u) = Mp∗,s0(·)(u) for all u ∈ U where U is a given class of

input functions. Then, we have

1. The parameter vector p is said to be globally structurally identifiable if for almost all

p∗ ∈ Ω, p ∼ p∗ implies p = p∗.

2. The parameter vector p is said to be locally structurally identifiable if there exists an open

set W ⊂ Ω (with respect to the Euclidean topology) such that for almost all p∗ ∈ W ,

p ∼ p∗ implies p = p∗.

3. The parameter vector p is said to be structurally unidentifiable if p is not locally struc-

turally identifiable.
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2.4.2 Structural Identifiabilty Analysis

To determine identifiable parameters, Ollivier in [68] eliminates non-observable state vari-

ables, s, to obtain relations among inputs, outputs, and unknown parameters. Such input-

output relations are polynomials in the variables {u,u′,u′′, . . . ,w,w′,w′′, . . .} with rational

coefficients in the parameter vector p. By analysis of the coefficients of input-output polyno-

mials, it is possible to establish the identifiability of p.

The input-output polynomials can be obtained from the characteristic set [67]. The char-

acteristic set is a “minimal” set of differential polynomials that generate the same differential

ideal as the ideal generated by (2.17); see [72]. The first m elements of the characteristic set

forms the input-output polynomials

A1(u,w,p), . . . , Am(u,w,p). (2.18)

Input-output polynomials can be represented as Aj(u,w,p) =
∑

i ei(p)Bi(u,w), where ei(p)

is a rational function in p and Bi(u,w) is a monomial function in {u,u′,u′′, . . . ,w,w′,w′′, . . .}.

To perform the structural identifiabilty, let p∗ be an arbitrary point in parameter space. We

then set Aj(u,w,p) = Aj(u,w,p∗), 1 ≤ j ≤ m, which leads to
∑

i(ei(p)−ei(p
∗))Bi(u,w) = 0.

Since the characteristic set is constructed based on a prime ideal [73], Bi(u,w) are linearly inde-

pendent and globally identifiable. Therefore, our identifiability problem is reduced to injectivity

of the map from p to the coefficients of the input-output polynomials, ei(p). Specifically, model

(2.17) is structurally identifiable if and only if

ei(p) = ei(p
∗) (2.19)

for all i imply that p = p∗ for any arbitrary p∗. The model is locally structurally identifiable

if and only if there are finite distinct solutions for p. The model is structurally unidentifiable

if and only if there are infinite solutions for p. The solutions of (2.19) are usually computed

by finding a Gröbner basis and using elimination [72].

We summarize the structural identifiabilty analysis as three steps:

1. Find input-output polynomials, Aj(u,w,p), based on the characteristic set.
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2. Recover the coefficients of input-output polynomials that are functions of parameters,

ei(p).

3. If the coefficient map from p to ei(p) for all i is 1-to-1, our model is identifiable.

A detailed description of the above procedures can be found in [69, 72]. In the following, we

present an example to illustrate the introduced steps.

Example: Consider the dynamical model [74]

s′1 = p1s
2
1 + p2s1s2,

s′2 = p3s
2
1 + p4s1s2,

w1 = s1,

which corresponds to the input-output polynomial

−ww′′ + w′2 + (p2p3 − p1p4)w
4 + (p1 + p4)w

′w2.

Thus, the coefficients of the input-output polynomial are

−1, 1, p2p3 − p1p4, p1 + p4.

We conclude the model in this example is not identifiable since there are 4 parameters and only

2 coefficients involving the parameters.

2.4.3 Network Identifiability

The aforementioned model (2.17) incorporates the ODEs of the form (2.1) and (2.2). More

precisely, these ODES can be represented by

x′(t,p) = f1(x(t,p),y(t,p),p),

y′(t,p) = f2(x(t,p),y(t,p),p), (2.20)

where vector p contains unknown parameters associated with ODEs (2.1) and (2.2), vector

x(t,p) genes levels at time t, and vector y(t,p) proteins levels at time t. The vector functions
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f1 and f2 are fractions of polynomial (or polynomials) that follow our system model. Let us

define the new vector

s ..=

x

y

 . (2.21)

Consequently, ODEs (2.1) and (2.2) can be shown as

s′(t,p) = f(s(t,p),p),

w(t,p) = g(s(t,p),p), (2.22)

with f(·) = (f1(·)T , f2(·)T )
T
and g(·) = x. As it appears, the above model preserves the struc-

ture (2.17), which presents an opportunity to utilize structural identifiability and determine

whether gene regulatory networks are globally (or locally) identifiable. However, gene regula-

tory networks are sparse since only a few genes can affect one gene. Therefore, the structural

identifiability must be derived for sparse networks. In fact, it is unlikely to identify such

networks without considering sparsity.

We extend the structural identifiability to the case in which the parameter vector p has

only k non-zero entries. In this scenario, we reduce the parameter space to the k-sparse vectors

and seek for the injectivity of the coefficient map. More precisely, we have

Theorem 2.2. Assume k elements from the parameter vector p are non-zero. If the coefficient

map from the space of k-sparse parameter vector to the coefficients of input-output polynomials,

ei(p), is 1-to-1, then the network is globally identifiable.

To clarify the above theorem, let us assume p ∈ Rd with k non-zero entries. We then have

d!
k!(d−k)! possibilities for k-sparse vectors, each corresponding to a subspace in the parameter

space, donated by Sl, 1 ≤ l ≤ d!
k!(d−k)! . The network is globally identifiable if (i) the map from

any Sl to the coefficients of the input-output polynomials is 1-to-1 and (ii) the map from each

Sl results in a distinct set of coefficients. Conditions (i) and (ii) guarantee that the coefficient

map in Theorem 2.2 is 1-to-1. Note that the network identifiability is performed similar to the

previous subsection, but, the injectivity of the coefficient map is analyzed with respect to the

space of k-sparse parameter vector.
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Figure 2.5: Map of gene regulatory network with a linear dynamical model. Parameters α, β,

and γ exhibits the relations among genes according to the dynamical model.

Remark 2.3. In the case that only condition (ii) holds, we are still able to identify the network

topology. In other words, condition (ii) enables us to determine support of the parameter vector

p.

The following examples are provided to demonstrate the network identifiability analysis. In

the first example, the network is identifiable while in the second example, the network is not

identifiable unless the parameter space is limited to the k-sparse vectors.

Example: Consider the gene network depicted in Figure 2.5 with the following dynamical

model

x′1 = 1− x1,

x′2 = αx1 − x2,

x′3 = γx1 + βx2 − x3,

where the gene levels x1, x2, and x3 are measured. For simplicity, we have assumed that our

dynamical model is linear and has a few unknown parameters (the network is sparse). The

input-output polynomials are

x′1 − 1 + x1 , x′2 − αx1 + x2 , x′3 − γx1 − βx2 + x3,

which correspond to the coefficients (involving parameters)

α, β, γ.

Therefore, the network is identifiable since we have 3 parameters and 3 distinct coefficients.
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Example: Consider the following coefficients that are obtained based on input-output

polynomials of a network:

p1 + p5 + 4p6 + 2p7, p2 + 2p5 + 3p6 + p7, p3 + 3p5 + 2p6 + 4p7, p4 + 4p5 + p6 + 3p7.

The above coefficients can be represented as Ap where

A =



1 0 0 0 1 4 2

0 1 0 0 2 3 1

0 0 1 0 3 2 4

0 0 0 1 4 1 3


, p = (p1, p2, p3, p4, p5, p6, p7)

T .

The network is not identifiable since the number of parameters is greater than the number of

coefficients. Let us assume there are only two non-zero parameters. To invistigate the injectivity

of the coefficient map, let p∗ be an arbitrary point in parameter space and Ap = Ap∗. We

then have A(p − p∗) = 0. Since vector (p − p∗) contains at most four non-zero entries and

any four columns of A are linearly independent, we arrive at p = p∗. We conclude that the

network is globally identifiable when at most two parameters are non-zero.

2.5 Simulations

2.5.1 Small Gene Network with Prior Knowledge of Degradation Rates

To demonstrate the proposed time-series approach, we consider the three-gene network

described by the following systems of ODEs for gene expression

dx1(t)

dt
=

0.1 + 0.05y1(t)y2(t) + 0.025y1(t)y3(t)

1 + 0.1y1(t) + 10y3(t) + 0.05y1(t)y2(t) + 0.025y1(t)y3(t)

− 0.1x1(t),

dx2(t)

dt
=

0.1 + 0.1y1(t) + 0.1y1(t)y2(t)

1 + 0.1y1(t) + 0.1y1(t)y2(t) + 10y1(t)y3(t)
− 0.1x2(t),

dx3(t)

dt
=

0.1 + 0.1y2(t)

1 + 0.1y2(t) + .1y3(t)
− 0.1x3(t), (2.23)
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Figure 2.6: Map of gene regulatory network described by equations (2.23) and (2.24). First-

order (single) and and second-order (combined) regulators are depicted in concentric circles.

Green arrows specify gene activation and red arrows specify gene repression. The relative

magnitudes of activation and repression are roughly represented by arrow thickness.

and the following system of ODEs for protein expression

dy1(t)

dt
=x1(t)− 0.5y1(t),

dy2(t)

dt
=2x2(t)− 0.5y2(t),

dy3(t)

dt
=x3(t)− 0.5y3(t). (2.24)

The above toy model, visualized in Figure 2.6, is provided to better explain our algorithms.

Although a small network is examined, many of the same qualitative characteristics of large

network are investigated in this example. The explicit system of ODEs, describing the kinetics

of the system [75], allows us to generate samples to fit our model and to also compare recovered

solutions with the ground truth. This model also incorporates complex modes of regulation,

including self-regulation and combined regulators.

To generate data, arbitrary initial conditions are assigned to ODEs (2.23) and (2.24) and

the system is allowed to resolve to a steady state. To perturb this steady state, the expression
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Figure 2.7: Gene expression trajectories (unnormalized) before and during the imposed per-

turbation. The system is in steady state before time 0. Gene 1 is artificially perturbed at time

zero, leading to changes in gene expression levels. A new steady state is eventually achieved

at approximately time 50. We sample expression levels between time 0 (the starting point of

perturbation) and 50 (the new steady state) and use them as data in our algorithm.

level of gene 1, x1(t), is artificially fixed to 0.3, leading to fluctuations in the expression levels of

other genes. Figure 2.7 illustrates expression trajectories before and during the perturbation.

We collect 12 samples from each gene expression level. The samples are chosen uniformly

from time interval [0, 50]. Points 0 and 50 specify the times at which the perturbation starts

and the system reaches a new steady state, respectively. Using these sampled data, we solve

optimization (P2) to effectively recover protein expressions as shown in Figure 2.8.

We finally examine Algorithm 1, (P3), for the goal of network recovery. In this scenario,

our target is to estimate vectors ai and bi. We assume that the degradation rates are known

in advance and therefore, since the system does not contain any miRNA in this particular

example, λi is completely at hand. Let us consider gene 3 where the true value of a3 =

(0.1, 0, 0.1, 0, 0, 0, 0) and b3 = (1, 0, 0.1, 0.1, 0, 0, 0). Vectors a3 and b3 are indexed with regard
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Figure 2.8: Exact protein expression curves derived from model ODEs (2.23) and (2.24) (left),

and their recovered estimations using 12 unnormalized timepoint samples via (P2) (right).

For convenience of graphical comparison, the values of ri were drawn from the system equa-

tions. Protein expression is otherwise normalized with respect to ri, but this would result in a

transformed scale for this qualitative comparison.

to

p3(tl) = (1, y1(tl), y2(tl), y3(tl), y1(tl)y2(tl), y1(tl)y3(tl), y2(tl)y3(tl)).

Applying our method, we obtain a3 ≃ (0.1, 0, 0.083, 0, 0, 0, 0) and b3 ≃ (1, 0, 0.083, 0.08, 0, 0, 0).

Table 2.1 demonstrates that as the sampling frequency increases, we attain more accurate

approximations. Furthermore, it can be seen that the estimations achieve similar accuracy

after a small number of samples.

Employing the aforementioned single perturbation, we are only able to recover the strongest

edge of gene 2, b2(6) = 10. The difficulty here is due to the sharp change in y1 (Figure 2.8),

which provides us with a minimal amount of dynamic information. y1 near-instantaneously

switches between two steady-state levels of expression, resulting in less accurate recovery of the

underlying dynamics. However, expression patterns in perturbed biological settings tend to be
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Table 2.1: Inference of binding coefficients describing energies of regulator complex-promoter

interactions based on number of samples.

# of Samples Variables Estimated vector entries

a3 0.097 0 0.082 0 0 0 0
8

b3 1 0 0.082 0.06 0 0 0

a3 0.1 0 0.093 0 0 0 0
16

b3 1 0 0.093 0.089 0 0 0

a3 0.1 0 0.1 0 0 0 0
24

b3 1 0 0.1 0.092 0 0 0

more dynamic and are unlikely to contain this type of expression pattern. In this example,

the removal of sharp instantaneous expression changes leads to complete recovery of the gene

regulatory network.

Remark 2.4. The recovery of regulatory networks using this proposed approach is tightly asso-

ciated with the presence of dynamic changes in gene expression. These changes can provide us

with a certain amount of information which predominantly specifies the accuracy of estimation.

The achievable accuracy depends on many factors such as nonlinearity in changes or similarity

in the range of changes.

2.5.2 Medium (10-gene) Simulated Network With Noise

We extend our approach to simulated networks of 10 genes, generated as part of the

DREAM4 in silico network inference challenge [76]. Each network dataset includes a sim-

ulated time series of gene expression in response to five chemical perturbations, along with

single steady-state expression levels for wild-type, knockdown, knockout, and multifactorial

perturbations. These datasets also simulate internal network noise and incorporate measure-

ment noise. We use these data to assess the robustness of our approach in a non-ideal setup.

Our approach is geared towards precise genetic and chemical perturbations, while these

datasets simulate chemicals that are non-specific in their interactions. To place us at further
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Figure 2.9: Time series gene expression measurements from simulated DREAM4 datasets are

shown with connected solid lines. Dashed lines of corresponding color show that application of

(P1) effectively produces noise-free (smooth) and continuous gene expression curves.

disadvantage, we attempt network recovery using only the time series perturbations, forgoing

all other datasets available to solvers. Lastly, our approach works best under conditions where

RNA and protein degradation rates are known. Given that this information is unavailable,

this exercise also serves as a test of our simplifying assumptions for such situations. Unlike

simulations in the previous section, the rules of this challenge stipulate no self-regulation and

no combined regulators.

DREAM4 Challenge 2 datasets for Networks 1 and 2 are used to infer gene regulatory

networks and to inspect predictions of network topology using the official scoring pipeline. First,

we use (P1) to produce smooth and continuous gene expression trajectories from the discrete

and noisy time series datasets (Figure 2.9). Perturbed genes are identified and incorporated as

described in Section 2.3.2. Network inference is carried out using Algorithm 1. In the absence

of RNA degradation rates, λmin is set to either 0.001 or 0.01, and λmax is set to 0.1 or 1. If a

directed network edge is identified, the probability of the edge is set to 1 for weighted edges, and
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0 otherwise. This is done to allow scoring of our network with the provided scripts, given our

non-probabilistic formulation. Algorithm 1 minimization values are filtered against abnormal

values that could represent underfitting and overfitting of data.

For Network 1, we report the area under the receiver operating characteristic curve (AU-

ROC) = 0.81 and the area under the precision-recall curve (AUPR) = 0.75, and for Network 2,

AUROC = 0.76 and AUPR = 0.68. These results compare very favorably to other time series-

based methods applied to the same datasets [9]. In fact, for Networks 1 and 2, the AUROC

and AUPR values represent improvements over the top reported results.

2.5.3 Network Inference From Yeast Cell Cycle Time Series

In order to probe real biological data with inherent noise, we apply parts of our pipeline to

a classical yeast cell cycle microarray dataset [77]. This data is provided as a 25 point time-

series with a 5 minute sampling interval. Given the yeast cell is in an incredibly dynamic stage

post synchronization with α-factor pheromone, this again represents a vast departure from

ideal near steady-state conditions with a precise and local perturbation. We chose to focus our

analysis on a set of primary regulatory genes and complexes involved in core cell cycle control

and that showed greater than 15% changes in expression over the time course [1]. This led

to retainment of 7 genes. We use (P2) to fit smooth continuous functions to the noisy gene

expression measurements exhibited in Figure 2.10. We next examine our proposed scheme,

(P4), to infer a gene regulatory network among these genes.

The inferred network is shown in Figure 2.10, with arrows indicating directed edges for

gene-gene excitatory and inhibitory interactions. Of the 12 regulatory interactions inferred,

6 are correct in both directionality and influence (i.e. inhibition vs activation) and 2 are

correct only in directionality. Further, 3 can be considered conditionally correct, whereby

the predicted influence is mediated by a single intermediate node that was absent from the

model. A single edge was labeled as a false positive, even though an argument can be made

for mediation of that influence by two intermediate nodes. Strikingly, the algorithm correctly

predicts a role for combined regulators and recovers the only example of self-regulation in the

reference pathway. This is promising, given the absence of data relating to protein degradation,
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17

Figure 6. Exact protein expression curves derived from model ODEs (17) and (18) (left),
and their recovered estimations using 12 unnormalized timepoint samples via (P2) (right).
For convenience of graphical comparison, the values of r

i

were drawn from the system equations.
Protein expression is otherwise normalized with respect to r

i

, but this would result in a transformed
scale for this qualitative comparison.

Figure 7. Time series gene expression measurements from simulated DREAM4 datasets
are shown with connected solid lines. Dashed lines of corresponding color show that application of
(P1) e↵ectively produces noise-free (smooth) and continuous gene expression curves.
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Figure 8. Time-series gene expression measurements of yeast cell cycle-associated genes
filtered at a stringent change detection threshold ( T = 0.15) (left), and their recovered
estimations using (P2) (center). The inferred network via (P4) is shown on the right, compared to
the network as it’s presently understood ( [?]). “True positives” represent edges recapitulated by the
inference algorithm in both direction and influence, “near positives” represent edges correct in direction
but with reversed influence, “indirect positives” represent edges of correct direction and influence with a
missing intermediate node, and “false positive” indicates an edge not found in the reference network
and that cannot be explained through a single intermediate node.
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Figure S1. ROC and P-R curves for Dream 4, Challenge 2.

Network 1 (top) and Network 2 (bottom).

Figure 2.10: Time-series gene expression measurements of yeast cell cycle-associated genes

filtered at a stringent change detection threshold ( T = 0.15) (left), and their recovered esti-

mations using (P2) (center). The inferred network via (P4) is shown on the right, compared

to the network as it’s presently understood [1]. “True positives” represent edges recapitulated

by the inference algorithm in both direction and influence, “near positives” represent edges

correct in direction but with reversed influence, “indirect positives” represent edges of correct

direction and influence with a missing intermediate node, and “false positive” indicates an edge

not found in the reference network and that cannot be explained through a single intermediate

node.

contextless inference, and the non step-wise nature of changes in expression that would be

preferred in our proposed experimental scheme.

2.6 Summary

The gene inference pipeline described in this work helps establish a robust framework for

network discovery from perturbed expression data. The system of equations used to model

eukaryotic gene regulation include the novel extension of a thermodynamic and statistical

mechanic approach to polymerase binding. This pipeline is best suited for the processing of

expression measurements from high-resolution time series experiments involving precise genetic

or chemical perturbation of a steady state system. Genetic perturbation is best in the form
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of induced over-expression or RNAi-mediated gene knockdown. Chemical perturbation is best

in the form of a chemical that has a specific protein interaction and limited off-target effects.

However, we establish that this approach can yield insights under non-ideal conditions.

The modular nature of our pipeline allows for the modification of different stages to best

fit a given biological system and of expression information. Alternative approaches can be

implemented for the stags that precede the core inference algorithm, including change detection.

The performance of this approach can further be improved with a priori knowledge of protein

expression levels, protein and RNA degradation rates, along with the labeling of non-coding

RNAs. Technologies are continually being improved for the purpose of capturing these data

in a genome-wide manner [78–81], to complement gene expression measurements. Our gene

inference approach can readily utilize protein expression data, protein and RNA degradation

data, and miRNA labeling data.

While we expect such inference approaches to work better for homogenous and synchronized

single-cell or single-tissue systems, we also expect to capture the most prominent and mean-

ingful aspects of the aggregate dynamics of heterogenous mixed-cell populations, multi-tissue

systems, and whole organisms. Future directions include the more comprehensive validation

and refinement of these algorithms for synthetic networks and higher-order eukaryotic systems,

adaptations of more sophisticated change detection schemes, and surveys of a broader range of

system-specific sampling frequencies.

This inference method has broad application in biological network discovery. For example, it

can be used to identify the topology of gene regulatory networks immediate to drug response,

and can be used to identify new interactions for genes implicated in disease. The inference

data can then be used to seed and prioritize candidates for downstream biological and in vivo

validation.



www.manaraa.com

38

CHAPTER 3. HIGH-DIMENSIONAL COVARIANCE MATRIX

ESTIMATION BASED ON KRONECKER PRODUCTS AND PARTIAL

OBSERVATIONS

A paper to be submitted

Mahdi Zamanighomi1 and Zhengdao Wang1

Learning of large-scale network topology based on measurements is a fundamental problem,

and also the main goal of the thesis. The availability of covariance matrices, combined with

observations, leads to a better estimation of network topology [82, 83]. In this chapter, we

specifically study the problem of high-dimensional covariance matrix estimation with partial

observations. We assume that the true covariance matrix can be represented as an expansion

of Kronecker products and observations suffer from missing values. In the absence of missing

data, observation vectors are assumed to be i.i.d multivariate Gaussian. In particular, we

propose a new procedure computationally affordable in high dimension to extend the permuted

rank-penalized least-square method [21] to the case of missing data. Our approach is applicable

to a large variety of missing data mechanisms, whether the process generating missing values

is random or not, and does not require imputation techniques. We introduce a novel unbiased

estimator and characterize its convergence rate to the true covariance matrix measured by the

spectral norm of a permutation operator. We also show that the estimator is positive definite

as the number of samples goes to infinity. We establish a tight outer bound on the square error

of our procedure and elucidate consequences of missing values on the estimation performance.

Different schemes are compared by numerical simulations in order to evaluate several missing

data models.

1Department of Electrical and Computer Engineering, Iowa State University, Ames, IA USA
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3.1 Introduction

The problem of covariance estimation with partial observations is fundamental and occurs

in variety of applications such as gene expression profile analyses [84,85], machine learning [86],

climate studies [87], and graphical models [88].

In practical applications, measurements may not be fully obtained, which results in an

observation data vector with missing entries. We can view the observation vector as having

less entries provided that missing entries take place at fixed positions of the vector. However,

missing entries may occur at positions that randomly change with time, requiring more complex

estimation methods.

There are many ways to deal with missing values, each of which results in different perfor-

mance [89–93]. Excluding missing data is the simplest approach, yet has noticeable flaws [28].

In this method, we remove all variables for which observations are missing and then limit the

statistical analysis to the fully observed variables. However, in some applications such as gene

expression data where the majority of genes are disturbed by missing data, we are left with

few variables and many available observations are wasted.

An alternative approach is to fill in missing values based on imputation techniques. For

this arrangement, existing procedures involve intensive computations to approximate missing

elements, e.g., EM algorithm [87].

Many recent applications involve huge datasets with both large sample size N and large

dimension d where the number of dimensions may drastically exceed the number of observations.

This problem leads to the idea of dimension reduction, also known as sparse or low rank

constraints, that is finding good low-dimensional representations of massive datasets. Promising

methods in several fields, such as compressed sensing [94], have been proposed to perform

dimension reduction [22,95–102].

Covariance matrices are not necessarily low rank and may follow different structures. For

instance, a well known class of covariance is positive definite matrices that are full rank. A

covariance matrix exhibits the Kronecker product (KP) structure [103, 104] if the covariance

can be represented as a sum of Kronecker products of two lower dimensional matrices. This
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model is favorable in variety of applications, for instance, matrix normal distributions are used

in nonparametric Bayesian approaches especially in learning Gaussian Processes for multiple

outputs prediction [105]. It is well known that the covariance matrix of the Gaussian Process

prior takes the form of KP. Additionally, the KP structure has applications in genomics [26,

106,107], collaborative filtering [25,108], geostatistics [109], and multivariate repeated measures

data [110,111].

Recently, [21] has proposed a convex optimization approach to estimate convariance ma-

trices with the KP structure and has derived a tight high-dimensional SE convergence rate

as N and d go to infinity. This method, called the Permuted Rank-penalized Least Squares

(PRLS), illustrates promising results in the spatio-temporal linear least squares prediction of

multivariate wind speed datasets. The PRLS however is not applicable to a large variety of

problems imposed by missing data.

In this chapter, we generalize the PRLS method [21] to the case of missing data. In partic-

ular, we seek to estimate high-dimensional covariance matrices with the KP structure through

partial observations. We propose a novel method for the treatment of missing data, which

requires neither imputing missing observations nor discarding any available observations to re-

cover covariance matrix. Notably, this novel approach utilizes the empirical covariance matrix

(ECM), even though we have no access to the ECM as a result of missing observations. Further-

more, we show that our estimator achieves the same SE convergence rate as [21], wherein all

observations are fully captured. However, we obtain that the estimator convergence rate holds

with a different probability due to the impact of missing values. Interestingly, our analysis

reveals circumstances under which high convergence probability is guaranteed.

The chapter is organized as follows. Section 3.2 introduces a new unbiased estimator and

generalizes the PRLS covariance estimation method to missing observations. Then, Section 3.3

characterizes the symmetry and positive definiteness of our estimator. Employing an operator

norm bound from Section 3.4, the SE convergence rate of the proposed method is established

in Section 3.5. Numerical simulations are given in Section 3.6 to demonstrate the effectiveness

of the proposed algorithm. Finally, Section 3.7 summarizes the chapter and describes some

remaining open problems associated with missing values.
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Notation: Throughout this chapter {i, j, t} are integer indices. Column vectors and matri-

ces are indicated by bold lower-case and upper-case letters, respectively. Symbol x(i) indicates

the ith entry of vector x and X(i, j) shows the (i, j)th element of matrix X. We use XT to de-

note the transpose of matrix X, vec(X) the vectorized form of matrix X (stacking the columns

of X into one column), ∥X∥F the Frobenius norm of matrix X, ∥X∥∗ the nuclear norm of

matrix X, ∥X∥∞ the largest singular value of matrix X, and ∥X∥0 the smallest singular value

of matrix X. The operator ◦ indicates the Hadamard product and ⊗ the Kronecker product.

For a d1d2 × d1d2 matrix X, {X[i, j]}d1i,j=1 represents its d2 × d2 block submatrices, where

submatrices are in the form of X[i, j] = X (1 + (i− 1)d2 : id2, 1 + (j − 1)d2 : jd2). We define

the permutation map P : Rd1d2×d1d2 → Rd21×d22 , in which the (i− 1)d1 + j row of P(X) is equal

to vec(X[i, j])T . For instance, the permuted version of a 4 × 4 matrix A when d1 = d2 = 2 is

equal to 

A(1, 1) A(2, 1) A(1, 2) A(2, 2)

A(1, 3) A(2, 3) A(1, 4) A(2, 4)

A(3, 1) A(4, 1) A(3, 2) A(4, 2)

A(3, 3) A(4, 3) A(3, 4) A(4, 4)


.

We use vec−1(·) and P−1(·) to show the inverse operator for vec(·) and P(·), respectively.

The operation X(α) takes each element X(i, j) to X(i, j)α and similarly, x(α) transforms x(i)

into x(i)α. We define Sd = {X ∈ Rd1×d : X = XT } to denote the set of real symmetric

matrices, S+
d the set of real symmetric positive semidefinite matrices, S++

d the set of real

symmetric positive definite matrices, and Nd = {x ∈ Rd : xtx = 1} the unite Euclidean sphere.

3.2 System Model

Let {xt}nt=1, xt ∈ Rd, be i.i.d. multivariate Gaussian vectors with zero mean and unknown

covariance matrix Σ0. We observe n i.i.d random vectors {zt}nt=1 as

zt = Γtxt, 1 ≤ t ≤ n (3.1)

where Γt is defined as the d× d diagonal matrix with Γt(i, i) = 0, 1 ≤ i ≤ d, if xt(i) is missing

and 1 otherwise. We emphasize that our analysis is not limited to such data that are missing
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completely at random (MCR), missing at random (MR), or not missing at random (NMR) [90].

Particularly, we consider model (3.1) for all possible arrangements of Γt since several random

and non-random processes could simultaneously generate missing values and even further, we

may not be able to model the missing data mechanism [112]. To the best of our knowledge,

existing missing data techniques such as maximum likelihood and multiple imputation, are

effective under specific structures for missing values and often computationally expensive in

high-dimensional setup.

Our goal is to estimate Σ0 given partial observations {zt}nt=1. We assume that (i) the

positions of missing data, Γt for all 1 ≤ t ≤ n, are known and (ii) the covariance matrix can

be written as a sum of KPs of two lower dimensional matrices:

Σ0 =

r∑
i=1

Ai ⊗Bi, (3.2)

where {Ai}ri=1 are d1×d1 linearly independent matrices, {Bi}ri=1 are d2×d2 linearly independent

matrices, and d = d1d2. We additionally assume that the factor dimensions d1 and d2 are given.

The integer r denotes the total number of KPs in the summation and is supposed to be less

than min(d21, d
2
2) [21]. The mentioned model (3.2) can be interpreted as a low rank principle

component decomposition where components are KPs, but neither orthogonal nor normalized.

Given observations with no missing data, a sufficient statistic to estimate the true covariance

matrix Σ0 is the ECM:

1

n

n∑
t=1

xtx
T
t (3.3)

However, the above unbiased estimator is not functional since we only have access to zt. We

thus consider the following alternative

ΣΓ
n =

1

n

n∑
t=1

ztz
T
t . (3.4)

This estimator concentrates around its mean, ΣΓ
0

..= E[ΣΓ
n ], which could be far away from

Σ0 and lead to unacceptably large biases in parameter estimates [27, 113]. To remove the

introduced bias, let us first rewrite ΣΓ
0 as follows

ΣΓ
0 = E[

1

n

n∑
t=1

ztz
T
t ] = E[

1

n

n∑
t=1

Γtxtx
T
t Γt] =

1

n

n∑
t=1

ΓtΣ0Γt = W ◦Σ0, (3.5)
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where W is the weight matrix with entries W(i, j) = 1
n

∑n
t=1 Γt(i, i)Γt(j, j). Although entries

of W belong to the interval [0, 1], we assume W(i, j) ∈ (0, 1] acknowledging that all variables

are successfully measured in at least one time point. Therefore equation (3.5) can be represented

as

Σ0 = W(−1) ◦ΣΓ
0 , (3.6)

leading to the following unbiased estimator of Σ0 when the dataset contains missing observa-

tions:

Σ̂n
..= W(−1) ◦ΣΓ

n . (3.7)

This unbiased estimator not only takes advantage of all available information to estimate Σ0

but also can be employed whether missing patterns are random or not. The model (3.7) suffers

from high variance when the number of samples, n, is smaller than the number of dimensions,

d. To tackle this challenge, a low rank approximation to Σ̂n is usually considered. The popular

low rank approximation called the standard principal component analysis (PCA) performs the

Eigen-Decomposition of Σ̂n to retain the top r principle components. The PCA estimator then

takes the form of

Σ̂PCA
n =

r∑
i=1

σ2
i viv

T
i , (3.8)

where σi is the ith largest singular value associated with the right singular vector vi. In high-

dimensional setting however, the PCA can be affected by excessive bias and bound to fail [114].

This phenomenon is mainly connected to known inconsistency results for sample eigenvalues

and eigenvectors as d increases.

In [115], an alternative method to derive the low rank covariance estimation is proposed as

the solution of the following penalized minimization problem:

Σ̂λ
n

..= arg min
Σ∈Sp++

∥Σ̂n −Σ∥2F + λTr (Σ), (3.9)

in which λ is a tuning parameter and Tr (Σ) is equivalent to the 1-norm on the eigenvalues of

Σ. The estimator (3.9) is developed for the case where all Γt(i, i) are i.i.d Bernoulli random

variables with the same parameter δ and independent of {xt}nt=1. For this scenario, the unbiased
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estimator Σ̂n is simplified to

(δ−1 − δ−2)diag(ΣΓ
n) + δ−2ΣΓ

n . (3.10)

Corollary 1 in [115] proves that the solution to the convex problem (3.9) converges to Σ at a

minimax optimal rate.

Here, we propose a penalized empirical risk minimization problem analogous to (3.9), but

applicable to any Γt, and generalize the PRLS [21] to the case in which observations are

partially captured, cf. models (3.1) and (3.2). More precisely, we propose the following convex

optimization to estimate the permuted version of Σ0:

(P1) P̂γ
n = arg min

P∈Rd21×d22

∥P̂n −P∥2F + γ∥P∥∗,

where P̂n
..= P(Σ̂n) (cf. Notation), P ..= P(Σ), and γ is a rank-controlling parameter. The

term ∥P̂n −P∥2F is equivalent to ∥Σ̂n −Σ∥2F (Theorem 2.1 in [116]). To shed light on the need

of ∥P∥∗, let’s consider equation (3.2). It is easy to show P0
..= P(Σ0) =

∑r
i=1 vec(Ai)vec(Bi)

T .

This suggests that P must be of rank r at most and therefore (P1) is a convex relaxation of

min
P∈Rd21×d22

∥P̂n −P∥2F

subject to rank(P) ≤ r. (3.11)

In particular, to obtain the convex relaxation of the above NP-hard problem, we leverage from

recent developments in compressive sampling [95] and substitute the ℓ0-norm with its ℓ1-norm

surrogate, which here corresponds to the nuclear norm ∥P∥∗.

It is well known that the solution of (P1) is in the following closed form [117]:

P̂γ
n =

min(d21,d
2
2)∑

i=1

max
(
0, σi(P̂n)−

γ

2

)
uiv

T
i , (3.12)

where σi(P̂n) is the ith largest singular value of P̂n corresponding to the left and right singular

vectors ui and vi, respectively. The answer P̂γ is essentially transformed back to the original

matrix space Rd×d employing Σ̂γ
n

..= P−1(P̂γ
n) (cf. Notation). In the next section, we explore

the symmetric and positive definiteness of our estimation Σ̂γ
n.
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Remark 3.1. Fast algorithms for solving convex optimization problems with a nuclear norm

regularization, such as (P1), have been recently proposed [117–120]. Numerical results suggest

that these methods are amenable to very large scale problems and recover low rank matrices

with nearly a billion unknowns. We conclude that the proposed (P1) can be efficiently solved

when matrix P0 is low rank, equivalently r ≪ min(d21, d
2
2). Moreover, we note that the obtained

solution is unique because (P1) is strictly convex for γ > 0.

Remark 3.2. In statistics, an outlier is defined as an observation far from other observations,

which could be due to mixture of different distributions or experimental errors. One may wish

to exclude them from datasets or design methods that are robust to outliers. Here, we propose

to use the estimated covariance matrix Σ̂γ
n to detect outliers. Interestingly [121] presents a fast

algorithm based on known distributions, which minimizes the covariance determinant to recog-

nize the most extreme measurements. We then discard the detected outliers, treated as missing

data, and invoke (P1) to re-estimate the covariance. We eventually perform the mentioned

process for a few iterations to refine our covariance matrix approximation.

Remark 3.3. In the case that the position of missing data is not available, we treat missing

values as outliers and follow the above remark to locate where missing values occur.

3.3 Symmetry and Positive Definiteness

Here, we investigate consequences of missing data on the de-permuted solution Σ̂γ
n to il-

luminate the possibility of successful arrival at a symmetric and positive definite estimation.

Specifically, we show that Σ̂γ
n is symmetric with probability 1 and, furthermore, is positive

definite with at least a probability, which exponentially increases as the number of samples

grows.

Employing the essence of Theorem 1 in [21], we discern that the de-permuted solution of

(P1), Σ̂γ
n, is

1. symmetric with probability 1 if Σ̂n is symmetric.

2. positive definite with probability 1 if Σ̂n is positive definite.
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In the context of [21], the estimator Σ̂n is equivalent to the ECM (3.3) and positive definite

for n ≥ d. However, this estimator in our setup is not necessarily positive definite due to the

presence of missing values. Therefore, to utilize the above results, we must explore cases where

the symmetry and positive definiteness of Σ̂n hold. Next theorem proposes an inner bound on

the probability that Σ̂n is positive definite.

Theorem 3.1. The unbiased estimator Σ̂n is

1. symmetric.

2. positive definite with probability 1 provided that n ≥ d1d2 and W(−1) is positive semidef-

inite.

3. positive definite with probability at least

1− 2e
−n

∥Σ0∥
2
0

C1C∥Σ0∥2∞+C2
√

C∥Σ0∥0∥Σ0∥∞ (3.13)

for n ≥ d1d2 and C ..= maxu∈Nd1d2
u(2)TW(−2)u(2), C1

..= 8e√
6π
, C2

..= 2e
√
2.

Proof. See Appendix B.

To elucidate the effect of missing data on the above probability, let us first introduce an up-

per bound for C, which is independent of u. Using Appendix B, we obtain that u(2)TW(−2)u(2) =∥∥W(−1) ◦ (uuT )
∥∥2
F
. Then, we have

∥∥∥W(−1) ◦ (uuT )
∥∥∥2
F
≤
(
max
i,j

W(−2)(i, j)

)
∥uuT ∥2F = max

i,j
W(−2)(i, j), (3.14)

and thus, C ≤ maxi,j W
(−2)(i, j). Consider a situation in which 25% of elements within the

set {xt(i)}nt=1 is not available for each i. In this scenario, the percentage of missing values is

quite noticeable in comparison with contemporary datasets. One can easily show that 16/9 ≤

W (−2)(i, j) ≤ 4, resulting in C ≤ 4. Hence, to diminish the involvement of missing observations

from the probability (3.13), we need at most 4n samples. Moreover, taking into account that

the probability (3.13) exponentially increases in n and the value C is finite, the probability

(3.13) is almost 1 for an appropriate number of samples.
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Remark 3.4. Matrix W is positive semidefinite since W can be written as HHT with H(i, j) ..=

1√
n
Γj(i, i), ∀1 ≤ i ≤ d and 1 ≤ j ≤ n. Problem 7.5.P12 in [64] states that for the positive

semidefinite W, the Hadamard inverse matrix W(−1) is also positive semidefinite if and only if

W is rank one. Thus, the sufficient and necessary condition for credibility of the second claim

in Theorem 3.1 is to arrive at rank one W. For instance, the rank one criteria ensures that

the estimator Σ̂n is positive definite with probability 1 provided that missing entries take place

with a pattern guaranteeing the same vector (Γ1(i, i), . . . ,Γn(i, i)) for all i. In addition, the

second requirement of Theorem 3.1 is satisfied when all observations are at hand.

3.4 Spectral Norm Bound

In this section, we characterize a bound on the spectral norm of Dn
..= P̂n − P0. We will

take advantage of this result to derive a tight outer bound on the SE estimation error.

Theorem 3.2. Fix ϵ ∈ [0, 12) and define N ..= max (d1, d2, n) and C0
..= max (C1CP , C2

√
CP )

where

CP
..= max

u∈N
d21

,v∈N
d22

u(2)P
(
W(−2)

)
v(2).

Assume q ≥ max (
√

2C1CP ln(1 +
2
ϵ ), 2C2

√
CP ln(1 +

2
ϵ )). Then, we have

∥Dn∥∞ ≤ q∥Σ0∥∞
1− 2ϵ

max

(
d21 + d22 + logN

n
,

√
d21 + d22 + logN

n

)
(3.15)

with probability at least 1− 2N
− q

2C0 .

Proof. Following the proof of Theorem 3 in [21], combined with Lemma B.2 (see Appendix B),

the proof is established.

We emphasize that Lemma B.2 plays an essential role in the proof of the above theorem. In

fact, the new lemma allows us to generalize the operator norm bound on the permuted ECM

(3.3), derived in [21], to our unbiased estimator (3.7).

Clearly, Theorem 3.2 demands no condition on the covariance matrix Σ0. However, for

the theorem to be of any practical interest, we require the outer bound in (3.15) to be small,
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leading to

n ≥ βCP (d
2
1 + d22 + logN), (3.16)

where β > 0 is a sufficiently large constant number. This appealing criteria reveals the impact

of missing data, CP , on the number of measurements sufficient to guarantee an accurate ap-

proximation to the spectral norm of Σ0. We note that the required number of samples does

not dramatically grow as a response to missing data, that is because CP ≤ maxi,j W
(−2)(i, j)

(similar argument as Section 3.3) is a small number in variety of applications.

3.5 SE Bound

Here, we establish a tight outer bound on the SE ∥Σ̂γ
n −Σ0∥

2

F . This result is built using

a bound on the Frobenius norm of ∥P̂n −P0∥
2

F and the fluctuation of Dn measured by the

spectral norm, Theorem 3.2.

Theorem 3.3. Choose γ equal to

2q∥Σ0∥∞
1− 2ϵ

max

(
d21 + d22 + logN

n
,

√
d21 + d22 + logN

n

)
,

where the introduced parameters are characterized based on Theorem 3.2. Then, we have

∥Σ̂γ
n −Σ0∥

2

F ≤ inf
P:rank(P)≤r

∥P−P0∥2F +
(1 +

√
2)

2

4
γ2rank(P) (3.17)

with probability at least 1− 2N
− q

2C0 .

Proof. See Appendix B.

The above theorem provides some insight on the tuning of the regularization parameter γ.

We notice this choice of γ depends on ∥Σ0∥∞, which is generally unknown. Thus, we suggest

using ∥Σ̂n∥∞ instead so that γ can be specified based on available information.

Given thatΣ0 takes the form of (3.2), the estimation error minP:rank(P)≤r ∥P−P0∥2F is zero.

Therefore for large enough n, Theorem 3.3 offers that the SE approximation error ∥Σ̂γ
n −Σ0∥

2

F

is of order r
d21+d22+logN

n , with probability not less than 1−2N
− q

2C0 . Indeed, this asymptotic SE

convergence rate of the covariance estimation with partial observations coincides with the same
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rate achieved in [21], where all observations are available. However, the probability 1−2N
− q

2C0

exhibits a change, that is the consequence of missing data. More precisely, the elements q and

C0 have greater values, compared to the non-missing case. Furthermore, the larger value of

q causes the regularization parameter γ to increase, demonstrating a greater emphasis on the

rank constraint in (P1).

The order of mean-square error (MSE) convergence rate for the standard sample covariance

matrix is
d21d

2
2

n , which is clearly less than the convergence rate of Σ̂n. Therefore, we realize from

Theorem 3.3 that the SE convergence rate of (P1) is significantly lower than the MSE conver-

gence rate of the unbiased sample covariance matrix Σ̂n, provided that rank r ≪ min(d21, d
2
2).

We finally discern from Theorem 3.3 that the solution of (P1) takes a structure similar to

(3.2) to satisfy the infimum (3.17), where each term in the expansion, Ai and Bi, can be of

any arbitrary rank. This freedom, nevertheless, can not be offered by the PCA procedure since

each term is limited to rank one.

3.6 Simulation

In order to provide a quantitative illustration of the results in this chapter, we compare the

SE performance obtained by the PRLS (solution of (4) in [21]), the Generalized PRLS (solution

of (P1)), the ECM (equation (3.3)), and the Generalized ECM (equation (3.7)). We emphasize

that the PRLS and ECM methods can not tolerate missing values while the Generalized PRLS

and the Generalized ECM are applicable to missing data.

We construct the true covariance matrix Σ0 employing model (3.2) with d1 = d2 = 10

and r = 3. Factors Ai and Bi take the form of SST , S is a square random matrix whose

columns follow a Gaussian distribution, which results in positive definite Σ0. We then generate

100-dimensional observation vectors based on the Gaussian distribution with zero mean and

covariance matrix Σ0. To include missing values, we randomly force 10, 20, and 30 entries of

each generated vector to be zero. For these three scenarios, the SE perfomance as a function

of sample size is shown in Figure 3.1. As predicted by Theorem 3.3, the Generalized PRLS

performs quite close to the PRLS when 10 and 20 percent of entries are gone. Furthermore for
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Figure 3.1: SE performance normalized with respect to ∥Σ0∥2F versus the number of available

samples n. The Generalized PRLS, Σ̂n, and the Generalized ECM, Σ̂n, are derived using

100-dimensioanl observation vectors with 10 missing entries (left), 20 missing entries (center),

and 30 missing entries (right). The true covariance matrix is constructed based on model (3.2)

with d1 = d2 = 10 and r = 3. We observe that the emprical perfomance of the Generalized

PRLS is close to the PRLS method and it also outperforms the ECM and Generalized ECM.

Note that the PRLS and ECM require all observations to be compeletely captured.

datasets containing tremendous number of missing values, such as right panel in Figure 3.1, we

still achieve an acceptable performance in comparison with the PRLS. We finally observe that

the Generalized PRLS notably outperforms the ECM and Generalized ECM.

3.7 Summary

We have shown that the PRLS method can be generalized to datasets that contain missing

values. The spirit is to replace the standard ECM with the unbiased estimator (3.7). The

novel estimator is applicable to a large variety of missing data patterns, such as MCR, MR,

and NMR, as long as all variables are observed in at least one time point. We have analyzed

the solution of the Generalized PRLS and shown that the approximated covaraince is positive

definite with a probability close to one for an appropriate number of samples. We have further

derived an analysis on the concentration of measure phenomenon for observation vectors that
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suffer from missing data, cf. Lemma B.2. Using this result, we have established a spectral

norm bound and also a SE bound to illustrate the performance of our procedure. We have

established that the Generalized PRLS achieves the same convergence rate as the PRLS, but

it holds with a different probability because of missing data. We have finally observed from

numerical results that the Generalized PRLS preforms quite close to the PRLS.

For the future, it is desirable to obtain all possible cases in which the estimator (3.7) is

positive definite with probability 1, see Theorem 3.1. This result will lead us to a complete

characterization of positive definiteness of the Generalized PRLS solution. Moreover, it would

be interesting to establish an inner bound on the SE or MSE performance and compare it

with the proposed SE outer bound. We believe that the Cramér-Rao lower bound (CRLB)

intended for biased estimators can be used to derive the MSE inner bound. Finally, we would

like to demonstrate the performance of the Generalized PRLS on real world applications that

are affected by missing data.
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CHAPTER 4. LINEAR MINIMUM MEAN-SQUARE ERROR

ESTIMATION BASED ON HIGH-DIMENSIONAL DATA WITH

MISSING VALUES

Modified from a paper published in Annual Conference on Information Sciences and Systems

Mahdi Zamanighomi1, Zhengdao Wang1, Konstantinos Slavakis2, and Georgios B Giannakis2

This chapter intends to develop low-complexity algorithms arising from large-scale data

analysis to improve statistical inference and prediction. Specifically, we consider LMMSE

estimation problems where the observation data may have missing entries. Processing such

data vectors exhibits high complexity if the observation data vector has high-dimensionality

and the LMMSE estimator must be re-derived whenever there are missing values. In this

context, a means of reducing the computational complexity is introduced when the number

of missing entries is relatively small. All first- and second-order data statistics are assumed

known, and the positions of the missing values are also known. The proposed method works by

first applying the LMMSE estimator on the data vector with missing values replaced by zeros,

and then applying a low-complexity update that depends on the positions of the missing. The

method achieves exact LMMSE based on only observed data with lower complexity compared

to the direct implementation of a time-varying LMMSE filter based on the incomplete data.

We also show that if LMMSE imputation is used to fill the missing entires first based on the

non-missing entries, and then a complete-data LMMSE filter is applied to the completed data

vector, then the same linear MMSE is also achieved, but with higher complexity.

1Department of Electrical and Computer Engineering, Iowa State University, Ames, IA USA
2Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN USA
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4.1 Introduction

LMMSE estimation is a method to linearly estimate a desired signal from an observation

so that the mean-square error is minimized. It has many applications in signal processing,

communications, and control theory to name a few.

For vector observations, the resulting estimator involves the inverse of the data covariance

matrix. When the dimensionality of the observation vector is small, such inversion can be

readily implemented. When the dimensionality is high, however, direct inversion may not be

feasible, and alternative methods are well motivated.

Goldstein et. al. in [34] presented the multistage Wiener filter (MSWF) method to im-

plement the LMMSE filter. In this approach, decompositions based on orthogonal projections

are used to derive a multistage structure which avoids explicit inversion of the data covariance

matrix.

In practical applications, the observations may not be captured completely, which results in

an observation data vector with missing entries. If such missing entries occur at fixed positions

of the observation vector, then one can simply view the vector as having less entries. On the

other hand, if the missing entries occur at positions that change with time, then the estimation

problem is more involved. If all data statistics are known and the missing positions are also

known, then the LMMSE estimator can still be derived and applied to the data values that

are non-missing. Such computations however may be expensive because a different estimator

is needed for each missing data pattern.

In this paper, we seek to reduce the complexity of LMMSE estimation when the data

vector with missing entries has high-dimensionality. Our approach is to first apply the full-

data processing to the data vector with missing entries, by treating the missing entries as zeros.

Then we modify the estimate with a relatively low-complexity update. Such a method reduces

the overall complexity of processing the observation data vectors with missing entries while

preserving the LMMSE optimality.

Notation: Throughout the paper N , M , and T are integers. We use t ∈ {1, . . . T} to denote

the time index, while i and j are integer indices. Vectors and matrices are indicated by lower
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s0(t)

x0(t)
wx0

∑

ŝ0(t)

−

+
ε0(t)

Figure 4.1: Wiener filter

and upper case bold symbols, respectively. We let E[·] denote expectation, (·)H the conjugate

transpose, and O(·) the order of complexity.

4.2 LMMSE Estimation

The classical LMMSE estimation problem is depicted in Figure 4.1. The signal s0(t) ∈ C

is a scalar desired signal, x0(t) ∈ CN×1 is the zero-mean observed data vector, and the vector

wx0 ∈ CN×1 is the sought LMMSE filter. The signal s0(t) is estimated as ŝ0(t) = wH
x0
x0(t).

The covariance matrix of x0(t) is given by

Rx0 = E[x0(t)x
H
0 (t)] (4.1)

and assumed to be nonsingular. The variance of s0(t) is

σ2
s0 = E[|s0(t)|2] (4.2)

and the cross correlation between s0(t) and x0(t) is

rx0s0 = E[x0(t)s
∗
0(t)] (4.3)

where (·)∗ denotes conjugation. The error

ε0(t) ..= s0(t)− ŝ0(t) = s0(t)−wH
x0
x0(t) (4.4)

is minimized in the mean-squared sense by the vector

wx0 = R−1
x0

rx0s0 . (4.5)

The minimum mean-square error (MMSE) achieved is

E[|ε0(t)|2] = σ2
s0 − rHx0s0R

−1
x0

rx0s0 . (4.6)
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4.2.1 Missing Data

When the observation vector x0(t) has missing entries, the weight vector in (4.5) cannot be

directly applied to obtain the optimal output ŝ0(t). However, if the positions of the missing

entries are known, the optimal filtering vector can be derived for the observable (non-missing)

part.

We assume that the positions of the missing entries in x0(t) are known. Let x̄0(t) ∈ CM(t)

denote the observable part of x0(t), which is a vector obtained by removing all entries that

correspond to missing values. We refer to x̄0(t) as incomplete data, and the vector x0(t) as

complete data. The remaining values x̃0(t) that are missing are referred to as missing data.

The covariance matrix corresponding to the incomplete data x̄0(t) is denoted by Rx̄0(t), and

the cross correlation vector between x̄0(t) and s0(t) by rx̄0(t)s0 . The optimal LMMSE estimator

is wH
x̄0(t)

x̄0(t), where

wx̄0(t) = R−1
x̄0(t)

rx̄0(t)s0 . (4.7)

Since the missing data positions in general may be different at different times, a direct imple-

mentation of the LMMSE estimator, which involves the inversion of the covariance matrix of

the observable part, is computationally expensive, especially when the dimensionality of x̄0(t)

namely M(t), is large. Suppose that M(t) is close N , or equivalently the number of missing

entries N − M(t) is small in comparison with N . Our objective is to realize time-dependent

LMMSE estimation with low complexity, by avoiding the recalculation of R−1
x̄0(t)

at different

times.

4.3 LMMSE Estimation with Incomplete Data

Our approach to reduce complexity is by updating the LMMSE filter output intended for

the complete data whenever the input data is not fully available. Instead of re-evaluating the

filter coefficients, a small update is applied so that the same MMSE optimality is retained.

To derive the update, suppose first that R−1
x0

is already computed. Without loss of gener-

ality, we assume the missing entries in x0(t) are in the last positions such that we can write
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the complete data as

x0(t) =

x̄0(t)

x̃0(t)

 (4.8)

where x̃0(t) ∈ CM×1 represents the missing entries. Define the N × 1 vector

z0(t) ..=

x̄0(t)

0

 (4.9)

which is obtained by setting the missing entries in x0(t) to zero. In general, the missing data

could occur at different entries of x0(t). However, x0(t) in the desired form can be obtained

by applying the appropriate permutation to the observed data vector based on the positions of

missing entries.

The update u(t) we are seeking is such that we can apply the complete-data LMMSE filter

to z0(t) first, and then update the filter output so that the subsequent LMMSE solution based

on x̄0(t) is obtained. Specifically, we would like the update to be such that

(
R−1

x0
rx0s0

)H
z0(t)− u(t) =

(
R−1

x̄0(t)
rx̄0(t)s0

)H
x̄0(t). (4.10)

The covariance matrix Rx0 can be partitioned as

Rx0 =

 Rx̄0(t) RH
x̃0(t)x̄0(t)

Rx̃0(t)x̄0(t) Rx̃0(t)

 . (4.11)

Using the lemma in the appendix, R−1
x can be written as

R−1
x0

=

R−1
x̄0(t)

+ LH
21S

−1L21 −LH
21S

−1

−S−1L21 S−1

 ..=

E F

G H

 (4.12)

where

L21 = Rx̃0(t)x̄0(t)R
−1
x̄0(t)

(4.13)

S = Rx̃0(t) −Rx̃0(t)x̄0(t)R
−1
x̄0(t)

RH
x̃0(t)x̄0(t)

. (4.14)

Using (4.12), R−1
x0

rx0s0 can be written asE F

G H


rx̄0(t)s0

rx̃0(t)s0

 =

Erx̄0(t)s0 + Frx̃0(t)s0

Grx̄0(t)s0 +Hrx̃0(t)s0

 (4.15)
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and consequently

(
R−1

x0
rx0s0

)H
z0(t) =

(
Erx̄0(t)s0

)H
x̄0(t) +

(
Frx̃0(t)s0

)H
x̄0(t). (4.16)

Substituting
(
R−1

x̄0
+ FH−1G

)
for E in (4.16) (see Appendix C), yields

(
R−1

x0
rx0s0

)H
z0(t) =

(
R−1

x̄0(t)
rx̄0(t)s0

)H
x̄0(t) +

(
FH−1Grx̄0(t)s0

)H
x̄0(t)+(

Frx̃0(t)s0

)H
x̄0(t). (4.17)

Comparing (4.10) with (4.17), the update at time t is

u(t) =
(
FH−1Grx̄0(t)s0

)H
x̄0(t) +

(
Frx̃0(t)s0

)H
x̄0(t). (4.18)

This update needs to be subtracted from the complete data filter output to yield the optimal

LMMSE estimate based on x̄0(t).

In summary, per slot t, the LMMSE solution ̂̄s0(t) based on x̄0(t) can be obtained as follows:

1. Given {Rx0 , rx0s0}, find wx0 as in (4.5) and compute wH
x0
z0(t).

2. Obtain update u(t) as in (4.18).

3. Find ̂̄s0(t) = wH
x0
z0(t)− u(t).

4.4 Discussion

4.4.1 Alternative Methods

Missing data is a common occurrence and may have noticeable effect on the final results

drawn from observations. Deletion and imputation have been proposed to deal with missing

data. In the deletion method, an entire record is excluded from analysis if any single value is

missing [?]. Partial deletion is also possible. However, discarding missing values introduces bias

in the results. Imputation is an alternate technique to mitigate bias effects. In this method,

missing data are replaced with substituted values based on available observations [122]. Such

replacement requires prior knowledge on the correlation statistics of the data.
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4.4.2 Complexity

Assuming that the inverse of the full-data covariance matrix Rx0 has been computed once,

the complexity of our proposed update at time t is O((N −M(t))3)+O((N−M(t))M(t)). The

first term is due to the need to invert the matrix H, and the second term is due to the matrix-

vector products. Compared to the direct inversion of an M(t)×M(t) matrix Rx̄0(t) which has

complexity O(M3(t)), the complexity of our proposed method is much lower especially if the

amount of missing data N −M(t) is small.

4.4.3 MSE Comparison

To evaluate the impact of missing data on the MSE performance, we list below the achievable

MSE in different scenarios:

Case 1: No Missing Data. If there is no missing data, the achievable MMSE is given by

(c. f. (4.6))

σ2
ε0

..= σ2
s0 − rHx0s0R

−1
x0

rx0s0 . (4.19)

Case 2: Missing Data with Partial Deletion. If missing data are simply set to zero, and

then a complete-data LMMSE filter is applied to z0(t), the achieved MSE is given by

σ2
s0 − 2Re {w̄H(t)rx̄0(t)s0}+ w̄H(t)R−1

x0
w̄(t) (4.20)

where w̄(t) = D(t)R−1
x0

rx0s0 , and D(t) is a diagonal matrix with 0 at (i, i)th entry if eTi x(t) is

missing and one elsewhere.

Case 3: LMMSE accounting for Missing Data. Applying the LMMSE estimator such as

in our proposed method on the incomplete data, the achieved MSE is

σ2
ε̄0(t)

..= σ2
s0 − rHx̄0(t)s0

R−1
x̄0(t)

rx̄0(t)s0 . (4.21)

Note that the MSE in Cases 1 and 3 are indeed the (linear) MMSE, but this is not generally

true for Case 2.

Case 4: LMMSE imputation. If the missing entries are replaced with their LMMSE esti-

mates based on the incomplete data, then the complete-data LMMSE filter wx0 can be applied
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to the completed data vector. In this case, the LMMSE estimate of the missing entries based

on the incomplete data is given by

ˆ̃x0(t) = (R−1
x̄0(t)

Rx̄(t)x̃(t))
H x̄0(t) = L21x̄0(t), (4.22)

where L21 is as in (4.13). The completed data vector with the imputed entries is

x̂0(t) =

 I

L21

 x̄0(t). (4.23)

Applying the complete-data LMMSE filter wx0 = R−1
x0

rx0s0 (cf. (4.5)) to x̂0(t) yields the

estimate of s0(t) as

wH
x0
x̂0(t) = rHx0s0R

−1
x0

 I

L21

 x̄0(t), (4.24)

which by using the expression of R−1
x0

in (4.12) can be verified to be equal to

rHx0s0

R−1
x̄0(t)

0

 x̄0(t) = rHx̄0s0R
−1
x̄0(t)

x̄0(t). (4.25)

Note that this is exactly the LMMSE estimate of s0(t) based on the incomplete data only. We

summarize the result in the following proposition.

Proposition 4.1. The LMMSE estimate of s0 obtained by applying the complete-data LMMSE

filter vector wx0 to the completed data vector x̂0(t) with LMMSE imputation for missing entries

is identical to the LMMSE estimate of s0 based on the incomplete data alone.

We note that although LMMSE imputation enables us to achieve the same MSE as that

of the LMMSE estimation based directly on the incomplete data, estimating the missing data

does incur additional complexity. The computational complexity of R−1
x̄0(t)

as required in the

imputation process can be reduced by leveraging the same technique as in our proposed reduced-

complexity LMMSE scheme in Section 4.3. Such imputation may be useful in cases where the

missing entries in the data vectors also need to be estimated in addition to the unknown signal

s0(t).
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Figure 4.2: The nested chain of Wiener filters

4.4.4 MSWF Update

The MSWF was developed in [34] as an LMMSE solution that does not require inversion

of the observed-data covariance matrix. In MSWF, a series of transformations is applied to

the input data so that the resulting components associated with the cross-correlation of each

stage are recognized and separated. As such, the MSWF avoids the explicit inversion of the

data covariance matrix, and thus reduces the complexity.

If the observation data has missing values however, the MSWF is not optimal. Applying

the MSWF to the data vector with missing entries (whose values are set to zero) result in

suboptimal performance, corresponding to Case 2 discussed in Section 4.4.3.

The multistage method works by applying the following recursion N times with increasing

i (see Figure 4.2)

si(t) = hH
i xi−1(t) (4.26)

where hi ∝ E[xi−1(t)si−1(t)], ∥hi∥ = 1 (4.27)

xi(t) = BH
i xi−1(t), BH

i hi = 0 (4.28)

and applying the backward recursion
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εi(t) = si(t)− w∗
i+1εi+1(t), i = N − 1, N − 2 . . . , 1,

with appropriately chosen scalars wi+1.

When there are missing data, it is non-trivial to derive the MSWF coefficients for the

incomplete data vector, without recomputing all coefficients involved. More precisely, for each

time slot when entries of the observed data are missing, we must first remove the missing entries

from the data (dimensionality reduction) before computing the MSWF corresponding to the

data without missing entries.

The described update in Section 4.3 addresses this challenge especially when the input

signals are of high dimensions. In fact, provided that the inverse of Rx0 is computed once,

instead of re-deriving the MSWF coefficients per time slot, one only needs a simple update on

the MSWF involving the covariance matrix inverse corresponding to the missing data.

4.4.5 Numerical Example

For illustration purpose, we provide a small numerical example to demonstrate the effect of

missing data on the overall achievable MSE. For ρ > 1, let [Rx0 ]i,j = ρ−|i−j|, N = 15, σ2
s0 = 1,

and

[rx0s0 ]i = a cos

(
2π

i− N
2

4N − 1

)
, i ∈ {1, . . . , N} (4.29)

where a is an adjustable parameter. We will choose ρ = 1.2 in our example. For simplicity, it

is assumed that the last four entries of x0(t) are missing per time slot. Running simulations

based on (4.19)–(4.20) for different values of a we arrive at Table 4.1, where the improvement

caused by the update is noticeable and significant for small MMSE.

4.5 Summary

We proposed a method to perform optimal LMMSE filtering of observation data with miss-

ing entries whose positions may be time varying. Our method applies the complete-data MMSE

filter to the partially-deleted data (setting missing entries to zero) and then updates the filter

output with an additional term. The proposed method offers reduced complexity per time

slot when the number of missing entries in a time slot is small. It is possible to apply the
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Table 4.1: The impact of missing data on MSE results

a Case#1 Case#2 Case#3

0.55 0.4949 0.5525 0.5246

0.60 0.3989 0.4674 0.4343

0.65 0.2945 0.3749 0.3360

0.70 0.1818 0.2751 0.2300

0.75 0.0608 0.1678 0.1160

proposed update to e.g., multi-stage Wiener filter, so that optimality in MSE is maintained

when processing data with missing entries.

It would be interesting to investigate the filter design problem without the knowledge of

missing entries positions. Moreover, finding an update when the observed covariance matrix is

rank-deficient would also be interesting.
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CHAPTER 5. CONCLUSION AND FUTURE WORKS

We have mainly considered modeling and learning of networks based on measurements,

specifically gene regulatory network inference and high-dimensional covaraince approximation.

Furthermore, we have contributed to the development of low-complex inference algorithms

responsible for high-dimensional data processing.

We have introduced a step-wise framework for gene regulatory network discovery from

dynamical expression data that result from genetic or chemical perturbation of a steady state

system. The ordinary differential equations used to model eukaryotic gene regulation presents

the new generalization of a thermodynamic and statistical mechanic approach to polymerase

binding. We have established robust and low-complexity algorithms to infer gene regulatory

networks, which is best suited for the genetic perturbation. However, we have shown that this

approach can still work under non-ideal conditions. Notably, our procedure allows us for the

modifications of its steps to improve the network inference, for instance alternative methods

for change detection. We can also improve the inference performance with a priori knowledge

measured across biological systems, such as protein and RNA degradation rates. Our method

can exhibit promising results for such real datasets that suffer from the absence of information

relating to degradation rates, contextless inference, and the non step-wise nature of changes in

gene expression. Our work can be further extended as follows:

• It is not always possible to construct gene regulatory networks based on gene expression

profiling experiments. For instance, the availability of small number of noisy observations

can potentially create non-identifiable problems. Moreover, biological structures are the

dominant factor to determine gene expression levels and the ability of network inference

will significantly depend on the complexity of systems. Therefore, gene expression data

may not be enough to identify networks. This present issue, that is investigated as identi-
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fiability of gene regulatory networks in chapter 2, leads to the question: what additional

biological and experimental data can be used to guarantee network identifiability? In

fact, new sources of information measured across biological systems may be considered

together with gene expression data, but they must be analyzed to deduce what type of

data is appropriate for the purpose of network inference.

• It would be interesting to propose a Kalman filter based approach to identification of

gene regulatory networks that is suitable for our system model [123]. This direction is

indeed beneficial since the Kalman filter method is an online iterative algorithm with the

capability of estimating a large number of parameters based on a few observations.

We have also investigated the problem of high-dimensional covariance matrix estimation

based on partial observations. We have proposed a convex optimization approach suitable for

any missing data patterns to estimate covariance matrices with Kronecker product structure.

We have shown that the estimated covariance is positive definite with a probability close to one

for an appropriate number of samples. Furthermore, we have established a spectral norm bound

and a square error bound to elucidate the performance of the proposed method. Our scheme

achieves high-dimensional consistency with a convergence rate quite faster than the standard

sample covariance matrix. Mathematical derivations has presented to reveal consequences of

missing data on the performance and numerical simulations has taken into account to verify

our results. There remain several open problems as follows:

• We would like to establish an inner bound on the SE or mean-square error performance

of our method and compare it with the SE outer bound. This analysis will elucidate

whether the proposed procedure is optimal or an opportunity to reach better performance

is possible. We believe that the Cramer-Rao lower bound intended for biased estimators

could be taken into account to derive the inner bound.

• It is desired to demonstrate the performance of the proposed method on real world appli-

cations that suffer from missing data. We suggest that wind speed datasets with missing

values are appropriate for our study [21].
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Finally, we have developed an algorithm to perform the optimal linear minimum mean-

square error filter for high-dimensional observation vectors that contain missing values. The

proposed method presents lower complexity compared to re-deriving the filter whenever the

position of missing data changes. We have shown that our method can be applied to multistage

Wiener filter and preserves its optimality. Future research directions are as follows:

• In chapter 4, we have assumed that the position of missing data are available. However,

the filter design problem when the position of missing entries are unknown remains open.

• we would like to construct updates according to specific covariance structures, such as

low rank and sparse properties, to improve computational complexities.
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APPENDIX A. SUPPORTING INFORMATION FOR CHAPTER 2

Treatment of protein regulators

Consider a gene for which the probability of RNAP being bound to a specific promoter

site, S, is under the potential influence of a single non-steady state regulator, Regulator 1, and

the collection of all available regulators still in steady state. The steady state regulators are

encapsulated as a single super-protein complex, SS, that is fixed as bound to the promoter

region. Suppose that we have P RNAP, R1 Regulator 1, and RSS super-protein complex.

We apply the following notation: εNS
P is used to denote the energy of the case in which

RNAP is bound to a non-specific (NS) DNA binding site, εSP,i0 the energy when RNAP is

only bound to the S binding site, εSP,i1 the energy when RNAP is specifically bound to the

promoter-regulator complex, εNS
SS the energy when the SS is bound to the NS binding site,

εSSS the energy when the SS is bound to the S binding site, εNS
i1 the energy when Regulator 1

is bound to the NS binding site, εSi1 the energy when Regulator 1 is bound to the S binding

site, and

∆εP,i0 ..= εSP,i0 − εNS
P ,∆εP,i1 ..= εSP,i1 − εNS

P ,∆εi1 ..= εSi1 − εNS
i1 .

Also define

Z(P,R1, RSS − 1) ..=
m!e−PβεNS

P e−R1βεNS
i1 e−(RSS−1)βεNS

SS e−βεSSS

P !R1!(RSS − 1)!(m− P −R1 −RSS + 1)!
,

where Z(P,R1, RSS − 1) gives the total number of arrangements for RNAP and R1 at NS

binding sites, weighted by a Boltzmann factor providing a relative energy for each state.

The available configurations of the system with corresponding unnormalized probabilities

are enumerated as follows: (i) Regulator 1 and RNAP unbound: Z(P,R1, RSS − 1), (ii) only

Regulator 1 bound: Z(P,R1 − 1, RSS − 1)e−βεSi1 , (iii) only RNAP bound: Z(P − 1, R1, RSS −
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1)e−βεSP,i0 , and (iv) both Regulator 1 and RNAP bound: Z(P − 1, R1 − 1, RSS − 1)e−βεSP,i1 . To

derive the probability of RNAP binding, we sum the probabilities of configurations in which

RNAP is bound to the specific site and divide over the sum of probabilities of all potential

configurations, Ztotal. Here, in parallel to [15], it is shown how the effect of steady state proteins

can effectively be removed from the protein regulator formulation, under the aforementioned

arrangement. To represent the probability of RNAP binding to the cis regulatory region of

gene i, we define pboundi as follows.

pboundi =

(
Z(P − 1, R1, RSS − 1)e−βεSP,i0 + Z(P − 1, R1 − 1, RSS − 1)e−βεSP,i1

)/
Ztotal

=

(
Z(P − 1, R1, RSS − 1)e−βεSP,i0 + Z(P − 1, R1 − 1, RSS − 1)e−βεSP,i1

)/
(
Z(P,R1, RSS − 1) + Z(P,R1 − 1, RSS − 1)e−βεSi1 + Z(P − 1, R1, RSS − 1)e−βεSP,i0

+ Z(P − 1, R1 − 1, RSS − 1)e−βεSP,i1

)
=

(
m

R1
eβε

NS
P e−βεSP,i0 + eβε

NS
P eβε

NS
i1 e−βεSP,i1e−βεSi1

)/(
m

R1
eβε

NS
P e−βεSP,i0 + eβε

NS
P eβε

NS
i1 e−βεSP,i1e−βεSi1

+
m2

PR1
+

m

P
eβε

NS
i1 e−βεSi1

)

=

1
y1
e−β∆εP,i0 + e−β∆εP,i1e−β∆εi1

1
y1
e−β∆εP,i0 + e−β∆εP,i1e−β∆εi1 + 1

Py1
+ 1

P e
−β∆εi1

=
Pe−β∆εP,i0 + y1Pe−β∆εP,i1e−β∆εi1

Pe−β∆εP,i0 + y1Pe−β∆εP,i1e−β∆εi1 + 1 + y1e
−β∆εi1

=
Pe−β∆εP,i0 + y1Pe−β∆εP,i1e−β∆εi1

(1 + Pe−β∆εP,i0) + y1e
−β∆εi1(1 + Pe−β∆εP,i1)

where we have applied the approximation

m!/P !R1!(RSS − 1)!(m− P −R1 −RSS + 1)! ≈ mPmR1mRSS/P !R1!(RSS − 1)!.

We introduce y1, the protein product of Regulator 1 defined as R1/m, for the purposes of

normalization and in keeping with the protein designations used throughout this paper. We
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additionally note that P in the final steps of the derivation above is also normalized to m, but

we retain the same notation for simplicity.

The final derivation can be generalized to, for an indefinite number of first and second order

regulators.

fi(YG(t)) =

N(t)∑
j=0

Pe−β∆εP,ije−β∆εij
∏

k∈Sij(t)

yk(t)

N(t)∑
j=0

(1 + Pe−β∆εP,ij )e−β∆εij
∏

k∈Sij(t)

yk(t)

, (A.1)

where ∆εij is the binding energy of the jth complex to the promoter, ∆εP,ij is the energy of

RNAP being bound to the promoter-regulator complex j, and P is the concentration of RNAP.

Setting aij = Pe−β∆εP,ije−β∆εij and bij = (1+Pe−β∆εP,ij )e−β∆εij , we arrive at the form given

in the section Protein-Mediated Regulation.

B-splines

B-splines have been well investigated in approximation theory and numerical analysis, lead-

ing to a variety of important properties such as computational efficiency and numerical stability.

Particularly, the B-spline basis functions have the best approximation capacity based on the

Stone-Weierstrass Approximation Theorem. Polynomial functions are also used to estimate

continuous functions. However, the B-spline bases are shown to be optimally stable [124].

A set of B-spline basis functions in variable t is determined by the degree of a piecewise

polynomial, P , and a knot sequence [125]. The knot sequence is a set of points that divides a real

interval into a number of sub-intervals. More precisely, D bases of degree P are parameterized

by D+P +1 knots, {t0, t1, . . . , tD+P } where t0 ≤ t1 ≤ . . . ≤ tD+P . Employing this set of knots

and the De Boor recursion in [126], the dth B-spline basis of degree P , written as φ
(P )
d (t), is

derived recursively as follows:

φ
(0)
d (t) =

 1 if td−1 ≤ t ≤ td

0 if otherwise
, (A.2)

φ
(p)
d (t) =

t− td−1

tp+d−1 − td−1
φ
(p−1)
d (t) +

tp+d − t

tp+d − td
φ
(p−1)
d+1 (t), (A.3)
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Figure A.1: The De Boor recursion for P = 3 and D = 4.

for 1 ≤ d ≤ D + P − p where p = 0 in (A.2) and 1 ≤ p ≤ P in (A.3). The above recursion is

visualized in Figure A.1 (reconstructed from [125]).

The degree P = 3 or 4 is sufficient in most applications. The number of basis functions

should be large enough to arrive at accurate estimation but not too large to cause overfitting.

In our case, gene and protein levels do not contain high frequency changes and therefore, a

small number of basis functions are sufficient to represent gene and protein expressions.

Bi-Convex Problems

Bi-convex optimization is a generalization of convex optimization where the objective func-

tion and the constraint set can be bi-convex [66].

Definition A.1. Let X ⊆ Rn and Y ⊆ Rn be two non-empty convex sets. The set E ⊆ X ×Y

is called bi-convex if Bx
..= {y ∈ Y : (x, y) ∈ B} is convex for each x, and By

..= {x ∈ X :

(x, y) ∈ B} is convex for each y.

Definition A.2. A function f(x, y) : B → R is called bi-convex if f(x, y) is convex on Bx for

every fixed x and also convex on By for every fixed y.
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A common method to solve a bi-convex problem is ADMM [127]. The ADMM is an iterative

augmented Lagrangian method that uses partial updates for dual variables and replaces joint

minimization by simpler sub-problems. However, the mentioned procedure does not guarantee

global optimality of the solution.

Proof of Theorem 1

The stationary points {āi, b̄i, λ̄i} of (P3) are derived by setting sub-gradients to zero as

follows

∇aiΓ(āi, b̄i, λ̄i) = 2

L∑
l=1

Ωl(āi, b̄i, λ̄i)pi(tl) = 0 (A.4)

∇bi
Γ(āi, b̄i, λ̄i) = −2

L∑
l=1

Ωl(āi, b̄i, λ̄i)u
T
i (tl)λ̄ipi(tl) + γ1b̄i + γ2 sign(b̄i) = 0 (A.5)

∇λi
Γ(āi, b̄i, λ̄i) = −2

L∑
l=1

Ωl(āi, b̄i, λ̄i)p
T
i (tl)b̄iui(tl) + γ1λ̄i + γ3 sign(λ̄i) = 0 (A.6)

with respect to constraints 0 ≤ āi ≤ b̄i and λ̄i ≥ 0. These constraints admit that sign(·)

can be replaced by vector 1 in the above equations. It is obvious from (A.5)–(A.6) that

b̄T
i ∇bi

Ω(āi, b̄i, λ̄i) = λ̄T
i ∇λi

Ω(āi, b̄i, λ̄i) = 0, which results in

2

L∑
l=1

Ωl(āi, b̄i, λ̄i)p
T
i (tl)b̄iu

T
i (tl)λ̄i = γ1b̄

T
i b̄i + γ2b̄

T
i 1 = γ1λ̄

T
i λ̄i + γ3λ̄

T
i 1. (A.7)

Consider the convex optimization

(P5) min
{ai,Gi,W1,W2}

L∑
l=1

(
pT
i (tl)ai − uT

i (tl)Gipi(tl)
)2

+ γ1κ(W1,W2)

subject to W ..=

W1 Gi

GT
i W2

 ⪰ 0,

where κ(W1,W2) ..= 1
2 (Tr(W1) + Tr(W2)).

Minimizing (P5) with respect to {W1,W2} leads to

∥Gi∥∗ = min
{W1,W2}

κ(W1,W2) subject to W ⪰ 0,
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which is the alternative characterization of the nuclear norm [95]. Taking advantage of the

nuclear norm, we can restrict matrix Gi to be rank one as λib
T
i . Also, κ(·, ·) is able to satisfy

the required sparsity for {λi,b
T
i }. To investigate these claims, recall constraints (??) and set

Gi
..= λib

T
i , W1

..= λiλ
T
i + γ3

γ1
diag(λi), and W2

..= bib
T
i + γ2

γ1
diag(bi) where diag(λi) is the

diagonal matrix with (j, j)th entry equal to λi(j). Then, the triple (Gi,W1,W2) is feasible

for (P5) due toW1 Gi

GT
i W2

 =

λiλ
T
i + γ3

γ1
diag(λi) λib

T
i

biλ
T
i bib

T
i + γ2

γ1
diag(bi)



=

λi

bi


λi

bi


T

+
1

γ1

γ3 diag(λi) 0

0 γ2 diag(bi)

 ⪰ 0. (A.8)

In addition, we have

γ1κ(W1,W2) = γ1

(
∥λi∥22 + ∥bi∥22

)
+ γ2∥bi∥1 + γ3∥λi∥1,

and therefore the same objective function for (P3) and (P5) are obtained. This proves any

feasible solution of (P5) yields an inner bound for (P3).

We next establish that the proposed inner bound is always equal to (P3) upon satisfying

the condition introduced in Theorem 2.1 and conclude the two problems are equivalent. The

equivalence ensures that the stationary point of (P3) (which exhibits Theorem 2.1 condition)

is in fact globally optimal. To show this, the Lagrangian is first formed as

L(Gi,ai,W1,W2,M) =

L∑
l=1

(
pT
i (tl)ai − uT

i (tl)Gipi(tl)
)2

+ γ1κ(W1,W2)− ⟨M,W⟩,

and M indicates the dual variable associated with the constraint W ⪰ 0. In accordance with

the block structure of W in (P5), we define M1
..= [M ]11, M2

..= [M ]12, M3
..= [M ]22, and

M4
..= [M ]21. The optimal solution of (P5) must
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(i) null the sub-gradients

∇aiL(Gi,ai,W1,W2,M) = 2
L∑
l=1

(
pT
i (tl)ai − uT

i (tl)Gipi(tl)
)
pi(tl) (A.9)

∇GiL(Gi,ai,W1,W2,M) = −2

L∑
l=1

(
pT
i (tl)ai − uT

i (tl)Gipi(tl)
)
ui(tl)p

T
i (tl)−M2 −MT

4

(A.10)

∇W1L(Gi,ai,W1,W2,M) =
γ1
2
I−M1 (A.11)

∇W2L(Gi,ai,W1,W2,M) =
γ1
2
I−M3 (A.12)

and also satisfy

(ii) the complementary slackness condition ⟨M,W⟩ = 0;

(iii) primal feasibility W ⪰ 0;

(iv) dual feasibility M ⪰ 0.

Consider the stationary points of (P3), and choose the candidate primal variables ãi ..= āi, G̃i
..=

λ̄ib̄
T
i , W̃1

..= λ̄iλ̄
T
i + γ3

γ1
diag(λ̄i), W̃2

..= b̄ib̄
T
i + γ2

γ1
diag(b̄i); and the dual variables M̃1

..= γ1
2 I,

M̃3
..= γ1

2 I, M̃2
..= −

∑L
l=1Ωl(āi, b̄i, λ̄i)ui(tl)p

T
i (tl), and M̃4

..= M̃T
2 . Then, condition (i) holds

because the sub-gradients (A.9)–(A.12) are zero when substituting the introduced primal and

dual variables. The requirement (ii) is also true since

⟨M̃,W̃⟩ = ⟨M̃1,W̃1⟩+ ⟨M̃3,W̃2⟩+ 2⟨M̃2, G̃i⟩

=
γ1
2

Tr

(
λ̄iλ̄

T
i +

γ3
γ1

diag(λ̄i)

)
+

γ1
2

Tr

(
b̄ib̄

T
i +

γ2
γ1

diag(b̄i)

)
− 2Tr

(
L∑
l=1

Ωl(āi, b̄i, λ̄i)p
T
i (tl)b̄iu

T
i (tl)λ̄i

)

=
1

2
Tr
(
γ1λ̄iλ̄

T
i + γ3 diag(λ̄i)

)
+

1

2
Tr
(
γ1b̄ib̄

T
i + γ2 diag(b̄i)

)
− Tr

(
γ1λ̄iλ̄

T
i + γ3 diag(λ̄i)

)
= 0,

where the last equality follows from (A.7). Moreover, (iii) is confirmed similar to (A.8). In

order to meet the last criterion (iv), according to a Schur complement argument [64], it is

sufficient to invoke ∥M̃2∥ ≤ γ1/2.

Consequently, by choosing the proposed candidates that have been proved to be optimal,

one can easily verify (P5) coincides with (P3). This completes the proof.
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APPENDIX B. SUPPORTING INFORMATION FOR CHAPTER 3

Proof of Theorem 3.1

Matrix Σ̂n is the Hadamard product of two symmetric matrices (cf. (3.7)) and therefore is

symmetric.

Using Lemma B.1, Σ̂n is positive definite if ΣΓ
n is positive definite (equivalently n ≥ d1d2)

and W(−1) (where all entries are positive) is positive semidefinite.

The last claim is proved based on techniques from compressed sensing and concentration

of measure inequalities for Gaussian matrices, see Lemma 2 in [21] and Appendix A in [128].

Let u = (u1, u2, . . . , ud1d2)
T ∈ Nd1d2 and define Λn

..= Σ̂n −Σ0. Then, we have

uTΛnu = uT (W(−1) ◦ΣΓ
n)u− uTE[W(−1) ◦ΣΓ

n ]u (B.1)

= tr

(
(W(−1) ◦ 1

n

n∑
t=1

ztz
T
t )uu

T

)
−

tr

(
E[W(−1) ◦ 1

n

n∑
t=1

ztz
T
t ]uu

T

)
(B.2)

=
1

n

n∑
t=1

(
zTt Mzt − E[zTt Mzt]

)
(B.3)

=
1

n

n∑
t=1

(
xT
t Γ

T
t MΓtxt − E[xT

t Γ
T
t MΓtzt]

)
(B.4)

=
1

n

n∑
t=1

ϕt (B.5)

where M ..= W(−1) ◦ (uuT ) and ϕt
..= xT

t Γ
T
t MΓtxt − E[xT

t Γ
T
t MΓtzt]. We used the important

resultΣ0 = E[Σ̂n] and also (3.4) to derive (B.1). Equation (B.2) follows from the definition (3.7)

and equation (B.3) follows from the property that tr ((A ◦B)C) = tr
(
A(BT ◦C)

)
. Replacing

the missing data model (3.1), we arrive at the equality (B.4). To simplify our derivation,

we employ the joint Gaussian property of {xt}nt=1 and introduce a random vector with i.i.d
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standard normal elements denoted by υt
..= Σ

− 1
2

0 xt ∼ N(0, Id1d2). Consequently, υT
t M̃tυt is

obtained as a stochastic equivalence to xT
t Γ

T
t MΓtxt, where M̃t

..= Σ
1
2
0 Γ

T
t MΓtΣ

1
2
0 . Using this

decomposition, we have

E|ϕt|2 = E|υT
t M̃tυt − E[υT

t M̃tυt]|
2

= E

∣∣∣∣∣∣
d1d2∑
i,j=1

υt(i)υt(j)M̃t(i, j)−
d1d2∑
i=1

M̃t(i, i)

∣∣∣∣∣∣
2

= E

∣∣∣∣∣∣
d1d2∑
i̸=j

υt(i)υt(j)M̃t(i, j) +

d1d2∑
i=1

(υt(i)
2 − 1)M̃t(i, i)

∣∣∣∣∣∣
2

=

d1d2∑
i̸=j

d1d2∑
i′ ̸=j′

E[υt(i)υt(j)υt(i
′)υt(j

′)]M̃t(i, j)M̃t(i
′, j′)

+

d1d2∑
i=1

d1d2∑
i′=1

E[(υt(i)
2 − 1)(υt(i

′)
2 − 1)]M̃t(i, i)M̃t(i

′, i′)

=

d1d2∑
i̸=j

M̃t(i, j)
2
+ 2

d1d2∑
i=1

M̃t(i, i)
2

=

d1d2∑
i,j=1

M̃t(i, j)
2
+

d1d2∑
i=1

M̃t(i, i)
2 ≤ 2∥M̃t∥

2

F

≤ 2∥Σ0∥2∞∥ΓT
t MΓt∥

2

F ≤ 2∥Σ0∥2∞∥M∥2F . (B.6)

We next derive an upper bound on ∥M∥2F as follows

∥M∥2F = tr
(
(W(−1) ◦ uuT )(W(−1) ◦ uuT )

)
= tr

(
(W(−1) ◦W(−1))uuT ◦ uuT

)
= tr

(
W(−2)u(2)u(2)T

)
≤ max

u∈Nd1d2

u(2)TW(−2)u(2). (B.7)

Employing a moment bound for the random variable ϕt (page 65 in [129]) and also Stirling’s

formula, Theorem 1.1 in [128] yields

E|ϕt|p ≤ p!Zp−2τt/2,
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for all p ≥ 2 and

Z = e
(
E|ϕt|2

) 1
2 ≤ e

√
2C∥Σ0∥∞

τt =
2e√
6π

E|ϕt|2 ≤
4Ce√
6π

∥Σ0∥2∞,

where C ..= maxu∈Nd1d2
u(2)TW(−2)u(2). The above inequalities follow from (B.6) and (B.7).

To end this proof, we consider Bernstein’s inequality leading to

P

(∣∣∣∣∣ 1n
n∑

t=1

ϕt

∣∣∣∣∣ ≥ δ

)
≤ 2e

− 1
2

n2δ2

nτ1+nZδ

≤ 2e
−n δ2

C1C∥Σ0∥2∞+C2
√

Cδ∥Σ0∥∞

with C1 = 8e√
6π

and C2 = 2e
√
2. Choosing δ = ∥Σ0∥0, we can conclude that ΣΓ

n is positive

definite with probability at least

1− 2e
−n

∥Σ0∥
2
0

C1C∥Σ0∥2∞+C2
√

C∥Σ0∥0∥Σ0∥∞

This completes the proof.

Lemma B.1

Lemma B.1. If matrix A is positive definite, B is positive semidefinite, and all entries on the

diagonal of B are positive then A ◦B is positive definite.

Proof. This is the immediate result of the Schur product theorem [130,131].

Lemma B.2

The concentration of measure phenomenon is an important subject in probability analysis.

There is now a vast literature on this area [132]. Specifically, [21] explores a class of concen-

tration of measure for coupled Gaussian Chaos based on i.i.d mutivarite normal observations.

However, these observation vectors in our study, {zt}nt=1, are corrupted by missing data. Next

lemma performs a systematic investigation of the concentration of measure phenomenon for

{zt}nt=1.
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Lemma B.2. Consider observation vectors {zt}nt=1 as introduced in the System Model. Let

u = (u1, u2, . . . , ud21)
T ∈ Nd21

, v = (v1, v2, . . . , ud22)
T ∈ Nd22

, and recall Dn (see Section 3.4).

We then have for all δ ≥ 0,

P
(∣∣uTDnv

∣∣ ≥ δ
)
≤ 2e

−n δ2

C1CP ∥Σ0∥2∞+C2
√

CP δ∥Σ0∥∞ . (B.8)

Proof. Let us rewrite Dn as follows

Dn = P(Σ̂n)−P(Σ0)

= P(W(−1) ◦ΣΓ
n)−P(E[W(−1) ◦ΣΓ

n ])

=
1

n

n∑
t=1

P(W(−1)) ◦
(
P(ztz

T
t )− E[P(ztz

T
t )]
)

=
1

n

n∑
t=1

P(W(−1))◦

vec(zt[1]zt[1]
T )

T − E
[
vec(zt[1]zt[1]

T )
T
]

vec(zt[1]zt[2]
T )

T − E
[
vec(zt[1]zt[2]

T )
T
]

...

vec(zt[d1]zt[d1]
T )

T − E
[
vec(zt[d1]zt[d1]

T )
T
]


,

where zt[i] ..= zt(1 + (i − 1)d2 : id2) is the ith subvector of zt. Hence, introducing F ..=

W(−1) ◦ (U⊗V) with U ..= P(−1)(u) and V ..= P(−1)(v), some elementary algebra gives that

uTDnv =

n∑
t=1

tr
(
(W(−1) ◦ ztzTt )U⊗V

)
− E

[
tr
(
(W(−1) ◦ ztzTt )U⊗V

)]
=

n∑
t=1

tr
((

W(−1) ◦ (U⊗V)
)
ztz

T
t

)
− E

[
tr
((

W(−1) ◦ (U⊗V)
)
ztz

T
t

)]
=

1

n

n∑
t=1

(
zTt Fzt − E[zTt Fzt]

)
.
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Following the proof of Theorem 3.1, combined with

∥F∥2F =
∥∥∥W(−1) ◦ (U⊗V)

∥∥∥2
F

= tr
[(

W(−1) ◦ (U⊗V)
)(

W(−1) ◦ (U⊗V)
)]

= tr
[
W(−2)(U(2) ⊗V(2))

]
= u(2)P

(
W(−2)

)
v(2)

≤ max
u∈N

d21
,v∈N

d22

u(2)P
(
W(−2)

)
v(2),

we arrive at (B.8).

Proof of Theorem 3.3

Although we follow similar logic as Appendix E in [21], our new Theorem 3.2 is taken into

account to prove the result here.

Assuming that ∥Dn∥∞ ≤ γ
2 , with probability one, we have from Theorem 2 in [21] (see also

Theorem 1 in [115])

∥P̂γ
n −P0∥

2

F ≤ inf
P:rank(P)≤r

∥P−P0∥2F +
(1 +

√
2)

2

4
γ2rank(P) (B.9)

We introduce the event

ωr
..=
{
∥P̂γ

n −P0∥
2

F > inf
P:rank(P)≤r

∥P−P0∥2F +
(1 +

√
2)

2

4
γ2rank(P)

}
Employing (B.9), we attain

P(ωr) = P
(
ωr ∩

{
∥Dn∥∞ >

γ

2

})
+ P

(
ωr ∩

{
∥Dn∥∞ ≤ γ

2

})
= P

(
ωr ∩

{
∥Dn∥∞ >

γ

2

})
= P

(
ωr

∣∣∥Dn∥∞ >
γ

2

)
P
(
∥Dn∥∞ >

γ

2

)
≤ P

(
∥Dn∥∞ >

γ

2

)
.

Choosing γ = 2q∥Σ0∥∞
1−2ϵ max

(
d21+d22+logN

n ,

√
d21+d22+logN

n

)
, Theorem 3.2 implies that

P
(
∥Dn∥∞ >

γ

2

)
≤ 2N

− q
2C0 .

Tanking into account that ∥P̂n −P0∥
2

F is equivalent to ∥Σ̂n −Σ0∥
2

F , the proof is completed.
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APPENDIX C. SUPPORTING INFORMATION FOR CHAPTER 4

Inversion of Block Matrix

The following result is useful for computing the inverse of a sub-matrix of a given matrix

based on the inverse of the whole matrix; see e.g., [133] and [134, p.572]

Lemma C.1. Let A be a nonsingular and symmetric matrix. Matrix A can be described based

on LDLT factorization as

A ..=

A11 BT
21

B21 A22

 =

 I

L21 I


A11

A22 −B21A
−1
11 B

T
21


I LT

21

I

 ,

where L21 = B21A
−1
11 and S = A22 −B21A

−1
11 B

T
21 is the Schur complement. The inversion of

A can be expressed by

A−1 =

A−1
11 + LT

21S
−1L21 −LT

21S
−1

−S−1L21 S−1

 . (C.1)

Equation (C.1) suggests that once A−1 is known, the task of computing A−1
11 can be reduced

to the following steps.

1. Calculate S by inverting S−1.

2. Rewrite LT
21S

−1L21 = LT
21S

−1SS−1L21 and compute it using −LT
21S

−1, S, and −S−1L21.

3. Subtract LT
21S

−1L21 from the corresponding sub-block matrix in A−1 to obtain A−1
11 .

Remark C.1. The complexity of LDLT factorization for an arbitrary N × N matrix A is

O(N3). However, in some applications, for instance when A is sparse, the computation of

LDLT factorization is reduced significantly [133], [135]. Thus, the term LT
21S

−1L21 can be alter-

natively computed as i) obtain L21 from LDLT factorization of A; and ii) compute LT
21S

−1L21

using S−1 and L21.
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